
Energy-Efficient CNN Implementation on a Deeply
Pipelined FPGA Cluster

Chen Zhang1, Di Wu2, Jiayu Sun1, Guangyu Sun1,3, Guojie Luo1,3, and Jason Cong1,2,3

1Center for Energy-Efficient Computing and Applications, Peking University, Beijing, China
2Computer Science Department, University of California, Los Angeles, USA

3PKU/UCLA Joint Research Institute in Science and Engineering

{chen.ceca, jiayusun, gsun, gluo}@pku.edu.cn, {allwu, cong}@cs.ucla.edu

ABSTRACT
Recently, FPGA-based CNN accelerators have demonstrated
superior energy efficiency compared to high-performance de-
vices like GPGPUs. However, due to the constrained on-chip
resource and many other factors, single-board FPGA designs
may have difficulties in achieving optimal energy efficiency.
In this paper we present a deeply pipelined multi-FPGA
architecture that expands the design space for optimal per-
formance and energy efficiency. A dynamic programming
algorithm is proposed to map the CNN computing layers
efficiently to different FPGA boards. To demonstrate the
potential of the architecture, we built a prototype system
with seven FPGA boards connected with high-speed serial
links. The experimental results on AlexNet and VGG-16
show that the prototype can achieve up to 21× and 2× en-
ergy efficiency compared to optimized multi-core CPU and
GPU implementations, respectively.

1. INTRODUCTION
Convolutional neural networks (CNN) have demonstrated

significant success in many domains, including computer vi-
sion and audio recognition. They achieved initial success for
handwritten character recognition in the 90s and since then
became the state-of-the-art in large-scale visual recognition
and classification. Countless studies in improving the accu-
racy of CNN models have been made in both academia and
industry [1, 2, 3].

Along with the evolution of CNN models, a general trend
is to scale up both the network size and computation com-
plexity. To satisfy the growing demand on computation
capability, researchers have used or created various high-
performance hardware platforms, including GPGPU or cus-
tomized accelerators such as FPGA and ASIC to improve
performance and efficiency [4, 5, 6, 7, 8].

FPGA-based accelerators have been gaining popularity
in accelerating large-scale CNN models because they can
achieve lower latency and consume much less power com-
pared to GPGPUs; they are also more flexible compared
to ASICs. They are especially favored in datacenter-scale
deployments [9]. Previous work mostly focused on single-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISLPED ’16, August 08-10, 2016, San Francisco Airport, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4185-1/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2934583.2934644

board implementation [8, 10, 11, 12, 13]. However, the
single-board design has several inefficiencies. First, FPGAs
typically have fewer on-chip floating-point units and memory
buffers, which limits their overall computing power. Second,
the compute kernels in a CNN model can have different re-
quirements for compute resource, memory bandwidth and
on-chip buffers. As a result, it is extremely difficult to bal-
ance the resource allocation on a single FPGA for different
layers in the CNN.

Table 1: Computation and memory complexity of different
CNN layers in AlexNet [14]

CONV LRN POOL NL FC

Total OPs (106) 591 5.5 0.5 0.0 37.7
Percentage 93.2% 0.8% 0.1% 0.0% 6%

Weight Size (MB) 10 0 0 0 224
Percentage 4.31% 0.0% 0.0% 0.0% 95.7%

DSPs per OP 1-5 11 3 0 1-5

The second issue can be better explained in Table 1, which
is a detailed analysis of the feed-forward stage of layers in
AlexNet [14], one of the most studied CNN models that won
the 2012 ImageNet contest. From Table 1, the following
conclusions can be drawn:

Convolution (CONV) layers are compute-intensive; they
consume 4.31% of the total weights but occupy more than
93.2% of the total arithmetic operations. Fully-connected
(FC) layers are memory bandwidth intensive; they contain
only 6% of all the arithmetic operations but require 95.7%
of the total weights. Local response normalization (LRN)
layers are resource-costly; although they contain a small
amount of arithmetic operations, it requires a lot of FPGA’s
DSP resources due to its power operations. Pooling (POOL)
and Non-linear (NL) layers do not consume much comput-
ing power or memory bandwidth, and do not require a large
amount of FPGA resources.

Focusing on this issue, we present a deeply pipelined multi-
FPGA architecture to accelerate the feed-forward stage of
large-scale CNNs. We also build a prototype of seven FPGA
boards connected with high-speed serial links in a ring net-
work to demonstrate the performance and energy efficiency
of the proposed architecture. To partition an existing CNN
model on the system efficiency, we propose a dynamic pro-
gramming algorithm to explore the optimal mapping of each
CNN layer on different FPGAs. In summary, this paper has
the following contributions:
• We propose a quantitative model for mapping CNNs to

the FPGA cluster. To our best knowledge, we are the
first to optimally explore the design space of mapping
CNNs on multiple FPGAs.

• We develop a prototype system to demonstrate that a
deeply pipelined FPGA cluster can achieve comparable

performance to implementations on a high-end GPU
while consuming much less energy.

2. BACKGROUND
In this section a review of the concepts used in this pa-

per and a description of computation kernels in CNN are
presented.

Feed-forward: The feed-forward step of CNN is classi-
fying an input image. It is composed of multiple feature ex-
traction layers, followed by classification layers. Each layer
receives several feature maps from the previous layer and
outputs a new set of feature maps. Figure 1 illustrates a
general model of the feed-forward computation. The convo-
lution layer, activation layer, and pooling layer are the main
components in extraction layers; the fully connected layers
are used in classification layers.

Figure 1: Feed-forward of a CNN model

CONV: CONV layers are the main components of a CNN
model. CONV computation is to extract feature information
by adopting a filter on feature maps from previous layers.
It receives N feature maps as input and outputs M fea-
ture maps. During the computation of N kernels, each sized
in K ×K, the kernals slide across corresponding input fea-
ture maps with element-wise multiplication-accumulation to
produce one output feature map. Assuming bmr,c represents a

pixel of the mth output feature map; anx,y represents a pixel

of the nth input feature map; ωm,ni,j represents the weight in
the convolution kernel between output m and input n, and
S denotes the kernels’ sliding stride—then the computation
of the CONV layer can be expressed as:

bmr,c =

N−1∑
n=0

K−1∑
i=0

K−1∑
j=0

ωm,ni,j · a
n
S·r+i,S·c+j (1)

LRN: LRN layers are sometimes applied after CONV lay-
ers. The LRN layer normalizes each pixel with pixels from
n neighboring feature maps at the same position. Assum-
ing bmr,c represents a pixel in the mth output feature map,

and amr,c is a pixel in the mth input feature map, then the
computation of the LRN layer can be written as:

bmr,c = amr,c/(k + α ·
min(N−1,m+n

2
)∑

j=max(0,m−n
2
)

(ajr,c)
2)β (2)

where k, α, β are parameters calculated based on the train-
ing and validation dataset.

POOL: POOL layers are used to achieve spatial invari-
ance by sub-sampling neighboring pixels, normally finding
the max value in a neighborhood in each input feature map.

NL: NL layers are used to adopt a non-linear function on
each pixel of feature maps from previous layers to mimic the
biological neuron’s activation.

FC: FC layers are used to make final predictions. The
FC layer takes “features” in a form of vectors, from fea-
ture extraction layers and outputs a new feature vector. Its
computation pattern is exactly a dense matrix-vector mul-
tiplication or inner-product. A few cascaded inner-products

finally output the classification result of CNN. Assuming an

and bm represent elements in the nth input feature and mth

output feature respectively and ωm,n represents the weights,
then the computation of the FC layer can be written as:

bm =

N−1∑
n=0

ωm,n · an (3)

3. DEEPLY PIPELINED FPGA CLUSTER
AND PROTOTYPE SYSTEM DESIGN

The computation of the feed-forward phase of a CNN
model is a streaming flow from the first layer to the last
based on the description in Section 2. As a result, in the
proposed architecture of the deeply pipelined FPGA clus-
ter, multiple FPGAs are connected in a ring network, which
is illustrated in Figure 2(a). On each of the FPGAs, a com-
putation engine is customized for a specific one or more CNN
layers according to optimization methods in Section 4. High-
speed serial links are used as an interconnection between two
FPGA boards, and a FIFO-based protocol is implemented
on the inter-FPGA links.

Aurora

1.25BG/s
FPGA

1

(a)

(b)

Aurora

1.25BG/s
FPGA

2
Aurora

1.25BG/s

Aurora

1.25BG/s

Aurora

1.25BG/s
FPGA

N-1

FPGA

N

Peripherals

AXI Bus

DDR3 Core0

64

Config Flash

UART

JTAG

Host CPU

LEDs

128MB BPI
flash

Buttons

Aurora

Stream
1 64

Aurora

Stream 164

PCIe Core

256

4 GB DDR3-1866 SO-DIMM

Host CPUS
h
iftin

g
 R

e
g

is
te

r

In
te

rn
a

l C
o
n

n
e

c
t

In
te

rn
a

l C
o
n

n
e

c
t

Internal Connect

CONV/FC POOL&NL LRN

Aurora

1.25BG/s

Tn

Tm
Tl

Figure 2: Logical organization of FPGA cluster

3.1 Interconnection
Low latency and high bandwidth are the requirements for

the inter-FPGA connection due to the large volume of in-
put and output data for each CNN layer, especially when
the cluster is processing images in batches. A bidirectional
board-to-board connection using the FPGA high-speed se-
rial transceiver and receiver is implemented using the Xil-
inx Aurora protocol [15]. Each link has a bandwidth of
750MB/s, and the latency is typically around 100 FPGA
cycles.

We also implemented a low-overhead flow control protocol
to avoid overflow of the input buffer of each FPGA. In our
protocol, the buffer state of FPGA II is back-propagated to
FPGA I using the same serial link to transfer data.

3.1.1 Computation Kernels
Figure 2(b) illustrates the mapping of CNN computation

engines on each FPGA. We build three computation engine
models for the five kernels. Based on the computation pat-
terns of CNN kernels, we use multiple channels to provide
concurrent data streams to an SIMD computation engine
for parallel processing. The number of channels are param-
eterized and constrained by FPGA on-chip BRAM and DSP
number. The overall design space exploration methodology
is described in Section 4.

CONV and FC layers can both be accelerated on a gen-
eralized CONV engine. For CONV layers, we make a par-

allelism model of Tn and Tm channels for input and output
feature maps, respectively. FC layers are data-intensive and
are usually bounded by bandwidth for FPGA platforms. We
solve this problem by batching the input feature maps for
FC, which enables the sharing of the weight matrix.

POOL and NL layers can usually be merged with the com-
putations of CONV layers to mitigate the latency and re-
source cost. Therefore, the POOL and NL engines have Tm
parallel channels, which is the same as the output of CONV
engines.

LRN layers are DSP resource-costly. An improper re-
source allocation for LRN layers can make it the bottleneck
of the system and degrade overall performance significantly.
This can be illustrated by the results in Section 5. In the
LRN engine, We model a partitioning of Tl parallel PEs for
LRN layers.

3.2 Prototype System Design

Figure 3: Physical implementation of FPGA cluster

To demonstrate the performance and energy-efficiency of
the proposed architecture, we build a hardware prototype
consisting of six Xilinx VC709 boards. A snapshot of the
system is shown in Figure 3. We use SATA cables for the
inter-FPGA communication, which are plugged to an Xilinx
XM104 extension board. Each XM104 board provides two
SATA ports, which are used to connect the two neighboring
FPGAs in the ring network.

Since all the FPGA boards are connected as a ring, it is
very easy to select the number of FPGA boards used in an
experiment by reconnecting the SATA cables. In our experi-
ments, we can evaluate different configurations ranging from
one FPGA to six FPGAs.

Besides the six VC709 FPGA boards used for CNN com-
putation, we also used another Xilinx ZC706 board, which
serves as a controller. On this board, there is a Zynq FPGA
that has dual-core ARM processors and FPGA programmable
fabrics on the same chip. A Linux OS is running on the Zynq
to control the operation of the whole system. It feeds im-
ages to the downstream FPGA and collects the results from
the FPGA at the end of the pipeline. It can also use the
Ethernet to communicate with a host CPU machine. Using
this design, we can eliminate a CPU host machine in the
system to improve its energy efficiency. We also connect all
the FPGA boards to a high-efficiency ATX power supply
from a PC to reduce the energy cost even further.

It is also possible to connect one or more FPGA boards
to the PCIE slot of a host CPU machine, so that the system
can be integrated into datacenters. This configuration is
more similar to the design of Microsoft’s Catapult system
[16] and can be more flexible in terms of deployment. We
leave this opportunity for future exploration.

4. MULTI-FPGA DESIGN SPACE
EXPLORATION

In this section we discuss the design space exploration of
different mappings of the feed-forward stage of the CNN
layer to an FPGA cluster.

4.1 Problem Formulation
In the deeply pipelined multi-FPGA architecture intro-

duced in the previous section, CNN layers are implemented
as compute engines on different FPGA boards. The ultimate
goal is to find the best linear mapping of each CNN layer i
to j to kth FPGA to form a pipeline of K FPGAs, such that
the overall latency is minimized or the overall throughput is
maximized. We assume that K, which is the total number
of FPGAs in the pipeline cluster, is smaller than N CNN
layers.

The complexity of an exhaustive enumeration is exponen-
tial to the number of layers N and FPGAs K, since the
design space of the mappings are as many as

(
N−1
K−1

)
.

In the following section we present a polynomial-time de-
sign space exploration solution using dynamic program-
ming. The algorithm effectively reduces the problem of
multi-FPGA design space exploration to a single-FPGA,
which is solvable by extending existing solutions such as [8].

4.2 Optimized Multi-FPGA Mapping
Solutions

The following equations present the solutions of through-
put maximization over the whole design space, where their
correctness can be proven by induction.

Inter-Board Data Transfer Model.
As discussed in Section 2, once a neural network is trained,

its weights become constants. We assume that all weights
are pre-stored in DRAM on corresponding FPGA boards
during configuration time. So the data transferred between
two FPGAs are the output feature maps of layer i, which
is the last layer of the first FPGA. Then the data-transfer
latency is:

Text(i) = Di/BWext (4)

where Di is the size of the output feature maps of layer Li
and BWext is the bandwidth of the board-to-board trans-
mission.

Latency minimization solution.
The latency is measured as the time to process one image.

We define L(i, j, k) as the minimal latency of mapping layer i
to j on k FPGA. Therefore, the final solution of the latency-
minimization mapping of a CNN model on up to K FPGAs
is:

min
k=1...K

L(1, N, k) (5)

We can recursively compute L(i, j, k) as the following:

L(i, j, k) =

L(i, j, 1), k = 1

minj−1
r=i

 L(i, r, k − 1)+
L(r + 1, j, 1)+
Text(r)

 , k ≥ 2

(6)
In the equation, L(i, j, 1) is the minimum latency of im-

plementing layer i to layer j on one FPGA, which can be
obtained using existing work. In a CNN model with N total
layers, there are N ∗(N+1)/2 different L(i, j, 1). After these
single-board solutions are computed, we need O(N2 ∗ K)
computations to obtain the final result.

Throughput maximization solution.
The throughput can be measured as both the overall giga-

operations per second (GOPS/s) or images per second. We
define T (i, j, k) as the maximal throughput of mapping layer
i to j on k FPGA. Therefore, the final solution of the through-
put maximization mapping of a CNN model on up to K
FPGAs is:

max
k=1...K

T (1, N, k) (7)

Since we also care about the overall energy efficiency, we
define a metric of “throughput over power,” which will be
GOPS/J or images/J. Assuming each FPGA board con-
sumes P Watt, the energy efficiency maximization solution
is:

max
k=1...K

T (1, N, k)

P · k (8)

Both of these solutions can be obtained by recursively
computing T (i, j, k) as follows:

T (i, j, k) =

T (i, j, 1), k = 1

maxj−1
r=i min

 T (i, r, k − 1),
T (r + 1, j, 1),

1
Text(r)

 , k ≥ 2

(9)
In the equation, T (i, j, 1) is the maximum throughput

achieved by implementing layer i to layer j on one FPGA,
which can be obtained using existing work. In a CNN model
withN total layers, there areN∗(N+1)/2 different T (i, j, 1)s.
After these single-board solutions are computed, we need
O(N2 ∗K) computations to obtain the result.

4.3 Single-FPGA Solution
In the previous sections, we presented a dynamic program-

ming algorithm that reduces the problem of multi-FPGA de-
sign space exploration to the sub-problems of single-FPGA
design space exploration. For the latency-minimization prob-
lem, the single-board optimization can be formulated as:

L(i, j, 1) = min

j∑
r=i

L(r), s. t. R ≤ RFPGA (10)

where L(r) is the compute time for layer r, R is the total
resource consumed by layer i to j, and RFPGA is the avail-
able resource on FPGA. For the throughput-maximization
problem, the single-board optimization can be formulated
similarly.

The execution cycle estimation for CONV, POOL and
NL layers is formulated as an equation that relates the total
number of arithmetic operations and loop unrolling factors
in [8, 12]. Zhang et al. [8] proved that the uniformed configu-
ration, in which two or more layers share the same hardware,
only increases the layer-specific configuration within 5% in
terms of execution cycles. Considering the frequency bene-
fit from the reduced circuit complexity, the best uniformed
configuration solution that is found by searching the whole
design space already has the highest GOP/s performance.
In this work we use a similar formulation.

FC layers can be viewed as a convolution [17] with 1× 1
kernels on 1× 1 feature maps. Since the amount of weights
is usually much larger than input feature maps, FC layers
are memory-bound according to [12]. In a max-throughput
design, we choose to batch the input feature maps. Assum-
ing a batch size of K, then the FC computation becomes a
convolution of 1 × 1 kernel on K feature maps. Note that

batching input feature maps does not improve the latency
of each feature map.

LRN layers normalize input feature maps by each pixel
with pixels from neighboring feature maps at the same po-
sition, whose computation pattern is described in Section 2.
It outputs the same number of feature maps as that of the
input. By deciding the unrolling factor for parallelizing mul-
tiple output feature maps, we are able to explore the trade-
off between the execution cycles and resource cost. The total
number of execution cycles are defined by

execution cycles =
total arithmetic operations

unroll factor

=
M ·R · C · (N + 4)

Ulrn

(11)

where the notations follow equation 2. To compute the pix-
els from neighboring output feature maps from CONV, a
stack of registers is used to buffer pixels from each of the
CONV engine’s output BRAM buffers, which does shifting
operations to feed LRN PEs with nearby pixels.

In summary, the unrolling factors of CONV and FCN lay-
ers are 〈Tm, Tn, Tk〉, the POOL and NL layers unrolling fac-
tor is Tm, and the LRN layer unrolling factor is Tl, which
defines each single-FPGA implementation. The total execu-
tion cycles of multiple layers on one single FPGA is the sum
of the execution cycles of all layers.

5. EXPERIMENTAL RESULT
5.1 Experiment Setup

The baseline system used in our evaluation is a work-
station of an eight-core AMD A10-5800K CPU working at
3.8GHz, and a NVidia Titan X GPU [18] plugged into the
PCI-E slot. OpenBLAS and cuDNN library are used for
software implementations.

For our prototype FPGA cluster (described in Section 3),
we use Xilinx Vivado tools to synthesize FPGA bitstreams.
The power consumption of both the baseline system and our
prototype system is measured by a power meter.

5.2 Evaluation of CNN Mappings
We first evaluate the mapping results under different ob-

jectives on the prototype system using two CNN models:
AlexNet[14] and VGG-16 [19].

Throughput and energy-efficiency maximization:
The throughput evaluations for AlexNet, based on different
FPGA cluster sizes, are illustrated in Figure 4a and Fig-
ure 4c. For AlexNet, the best throughput is achieved at de-
sign A, which uses four FPGAs. Because the throughout is
flattened after four FPGAs, the best energy efficiency is also
achieved in design A. For VGG-16, the overall throughput
increases with more FPGA boards but the energy efficiency
does not. Therefore, the most energy-efficient design for
VGG is design C in Figure 4c using one FPGA, and design
E achieves the highest throughput using six FPGAs.

Figure 5 illustrates the detailed execution time break-
downs for design A and C. Design A is shown in Figure 5b,
where all the layers are pipelined on four FPGAs, and the
total execution time for each FPGA is balanced. Design C
is shown in Figure 5a, where every layer in VGG executes
sequentially.

Latency-minimization results: Figure 4b and Figure 4d
illustrate the trade-offs between the FPGA cluster size and

0

2

4

6

8

10

0

200

400

600

800

1000

0 2 4 6

Throughput(GOPS)

Energy Efficiency(GOPS/J)

A

Number of FPGA boards in pipeline

(a) Throughput-maximization so-
lutions for AlexNet

0

0.5

1

1.5

2

0

20

40

60

80

0 2 4 6

latency (s)

Energy Efficiency (GOPS/J)

B

Number of FPGA boards in pipeline

(b) Latency-minimization solu-
tions for AlexNet

0

5

10

15

0

500

1000

1500

0 2 4 6 8

Throughput(GOPS)
Energy Efficiency(GOPS/J)

C

Number of FPGA boards in pipeline

E

(c) Throughput-maximization so-
lutions for VGG-16

0

2

4

6

8

10

0

50

100

150

200

0 2 4 6

Latency (ms)

Energy Efficiency (GOPS/J)

D

Number of FPGA boards in pipeline

(d) Latency-minimization solu-
tions for VGG-16

Figure 4: Design space exploration of throughput (GOPS/s) and energy efficiency (GOPS/J) and latency (ms) maximization
for AlexNet and VGG-16

Figure 5: Execution time per image and FPGA board as-
signment of each layer in (a) design C and (b) design A

the best latency achieved for AlexNet and VGG-16 respec-
tively. For AlexNet, the best latency is also achieved with
four FPGAs. For VGG-16, the latency varies little due to
its regular computation pattern.

Designs B and D achieve the best latency for VGG-16 and
AlexNet respectively. Since in the latency-minimization de-
sign the FC layers are not batched, the total time is dom-
inated by weight transfer. As a result, designs B and D
achieve less energy efficiency compared to designs A and
C, which are obtained from throughput-maximization solu-
tions.

Observations: Several observations can be draw from
Figure 4. First, the computation pattern of AlexNet has
more variation than VGG, especially since it contains a LRN
layer while VGG does not. As shown in Table 1, LRN is very
resource-costly, so it can become a system bottleneck when
insufficient resource is allocated. This problem is illustrated
in Figure 6. Second, the layer configuration of AlexNet has
larger variations than VGG-16. Two out of five layers in
AlexNet are followed by LRN layers, while VGG-16 has re-
peated CONV, NL and POOL layers. As a result, more
FPGA resources in the pipeline help to get better accelera-
tion for different layers. In addition, the convolution kernel
sizes vary from 11×11 to 3×3 in AlexNet, which introduces
more imbalance between the workload of different layers.
Having more FPGA boards can improve workload balanc-
ing by allowing different configurations for each layer. In
VGG-16, all layers use 3× 3 kernels, so the imbalance issue
is minimal.

Figure 6: Performance comparison between CONV and
LRN with different resource budgets. The horizontal axis
’r’ denotes the ratio of DSP resource for CONV and LRN;
higher ’r’ means more DSPs are used for convolution and
less for LRN. The vertical axis denotes execution cycles.

5.3 Overall System Performance and Energy
Efficiency

Table 2 presents the comparisons between the designs gen-
erated on our FPGA cluster under different objectives and
multiple baselines, including previous work on single-FPGA
implementations.

For the designs generated from either throughput or en-
ergy optimization, the overall throughput is the highest among
the previous single-FPGA accelerator designs for AlexNet
and VGG. The energy efficiency is less than one previous
work on Zynq [12] because the Zynq board is for embed-
ded systems, while our FPGA cluster incurs inevitable over-
heads like board-board communications and an additional
FPGA as the master node (ZC706 in our case). However,
we are still higher than previous throughput-oriented FPGA
accelerator designs [13]. The best throughput achieved by
our prototype system is less than the GPU results, but it
achieves 1.6× to 2× higher energy efficiency.

In all of our implementations, the top-1 and top-5 accu-
racy of the FPGA implementation of AlexNet and VGG are
less than < 2% compared to the software implementation.

6. CONCLUSION
In this paper we propose a deeply pipelined multi-FPGA

architecture and apply various strategies to optimize CNN
mapping to multi-FPGA platforms. We also propose a dy-
namic programming method to efficiently explore the design
space for both efficiency and latency. We build a prototype
of up to six FPGAs to verify our idea. With two famous
CNN models as case studies, we demonstrate that our pro-
totype can achieve up to 21× and 2× energy efficiency com-
pared to optimized multi-core CPU and GPU implementa-
tions respectively. The overall throughput and latency re-
sults of the prototype system are also better than existing

Table 2: Comparison of CPU, GPU, FPGA implementations
CPU GPU+CPU Work [12] Work [13] Design A Design B Design C Design D Design E

Device AMD NVIDIA Zynq Stratix-V Virtex-7 Virtex-7 Virtex-7 Virtex-7 Virtex-7
A10 Titan X XC7Z045 GSD8 VX690t VX690t VX690t VX690t VX690t

Technology 32nm 28nm 28nm 28nm 28nm 28nm 28nm 28nm 28nm
CNN Model AlexNet AlexNet VGG & VGG& Alex Alex VGG VGG VGG

AlexNet AlexNet
Precision float float fixed(16b) fixed(8-16b) fixed(16b) fixed(16b) fixed(16b) fixed(16b) fixed(16b)
Accuracy Top-1 - 54.3% 68.02% 66.58% 52.4% 52.4% 66.51% 66.52% 66.51%
Accuracy Top-5 - 78.7% 87.94% 87.48% 77.83% 77.83% 86.89% 86.92% 86.88%
Frequency (MHz) 3,800 ∼ 1,000 150 120 150 150 150 150 150
Power (Watt) 87.3 328.3 9 19.1 126 126 35 35 160

Objective - - - Throughput Energy* Latency* Energy* Latency* Through.*

Batch Size 16 256 1 1 16 1 2 1 2

of FPGAs - - 1 1 1+4‡ 1+4‡ 1+1‡ 1+1‡ 1+6‡

Through. (GOPS) 34.23 1385.5 137.0 117.8 825.6 128.8 290 203.9 1280.3
Latency (ms) 83.6 89.7 224.6 262.9 104 30.6 213.6 151.8 200.9

E.-E.(GOPS/J) 0.39 4.22 15.2 6.17 6.55† 1.02† 8.28† 5.83† 8.00†

* Optimization objective for ’Energy’ uses the metric of ’GOPS/J’ and objective for ’Latency’ uses ’second/image.’
‡ 1+N represents 1 Zynq board plus N VC709 boards.
† The power consumption also include the ZC706 board; therefore the overall energy-efficiency is less than reported in Figure 4.

single-FPGA implementations. The proposed architecture
can also be easily integrated with the latest single-board
FPGA design to achieve better energy efficiency.

7. ACKNOWLEDGMENT
This work is partially supported by the financial contribu-

tions from Fujitsu, Google, MSRA, Mentor Graphics, and an
equipment donation from Xilinx. We thank the UCLA/PKU
Joint Research Institute and Chinese Scholarship Council for
their support of our research.

8. REFERENCES
[1] R. Girshick et al., “Rich feature hierarchies for

accurate object detection and semantic segmentation,”
in Computer Vision and Pattern Recognition (CVPR),
2014 IEEE Conference on. IEEE, 2014, pp. 580–587.

[2] A. Coates et al., “Deep learning with cots hpc
systems,” in Proceedings of the 30th international
conference on machine learning, 2013, pp. 1337–1345.

[3] O. Yadan et al., “Multi-gpu training of convnets,”
arXiv preprint arXiv:1312.5853, p. 17, 2013.

[4] Y. Q. C. Jia, “An Open Source Convolutional
Architecture for Fast Feature Embedding,”
http://caffe.berkeleyvision.org, 2013.

[5] T. Chen et al., “Diannao: A small-footprint
high-throughput accelerator for ubiquitous
machine-learning,” in ACM SIGPLAN Notices,
vol. 49, no. 4. ACM, 2014, pp. 269–284.

[6] Y. Chen et al., “Dadiannao: A machine-learning
supercomputer,” in Microarchitecture (MICRO), 2014
47th Annual IEEE/ACM International Symposium on.
IEEE, 2014, pp. 609–622.

[7] M. Sankaradas et al., “A massively parallel
coprocessor for convolutional neural networks,” in
Application-specific Systems, Architectures and
Processors, 2009. ASAP 2009. 20th IEEE
International Conference on. IEEE, 2009, pp. 53–60.

[8] C. Zhang et al., “Optimizing fpga-based accelerator
design for deep convolutional neural networks,” in
Proceedings of the 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser.
FPGA ’15. New York, NY, USA: ACM, 2015, pp.
161–170.

[9] J. Ouyang et al., “Sda: software-defined accelerator for
large-scale dnn systems,” in Hot Chips: A Symposium
on High Performance Chips, 2014.

[10] C. Farabet et al., “Cnp: An fpga-based processor for
convolutional networks,” in Field Programmable Logic
and Applications, 2009. FPL 2009. International
Conference on. IEEE, 2009, pp. 32–37.

[11] S. Chakradhar et al., “A dynamically configurable
coprocessor for convolutional neural networks,” in
ACM SIGARCH Computer Architecture News, vol. 38,
no. 3. ACM, 2010, pp. 247–257.

[12] J. Qiu et al., “Going deeper with embedded fpga
platform for convolutional neural network,” in
Proceedings of the 2016 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays.
ACM, 2016, pp. 26–35.

[13] N. Suda et al., “Throughput-optimized opencl-based
fpga accelerator for large-scale convolutional neural
networks,” in Proceedings of the 2016 ACM/SIGDA
International Symposium on Field-Programmable Gate
Arrays. ACM, 2016, pp. 16–25.

[14] A. Krizhevsky et al., “Imagenet classification with
deep convolutional neural networks,” in Advances in
Neural Information Processing Systems 25, F. Pereira
et al., Eds. Curran Associates, Inc., 2012, pp.
1097–1105.

[15] “Aurora 64B/66B,” http://www.xilinx.com/products/
intellectual-property/aurora64b66b.html.

[16] A. Putnam et al., “A reconfigurable fabric for
accelerating large-scale datacenter services,” in 41st
Annual International Symposium on Computer
Architecture (ISCA), June 2014.

[17] J. Long et al., “Fully convolutional networks for
semantic segmentation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition, 2015, pp. 3431–3440.

[18] NVIDIA, “Gpu-based deep learning inference: A
performance and power analysis,” NVIDIA
Whitepaper, vol. 2, 2015.

[19] K. Simonyan et al., “Very deep convolutional networks
for large-scale image recognition,” arXiv preprint

arXiv:1409.1556, 2014.

