
Impact of Loop Transformations on Software Reliability

Jason Cong and Cody Hao Yu
Computer Science Department, University of California, Los Angeles, CA, USA

{cong, hyu}@cs.ucla.edu

Abstract—Application-level correctness is a useful and widely accepted
concept for many kinds of applications in this modern world. The results
of some applications, such as multimedia, may be incorrect due to
transient hardware faults or soft-errors, but they are still acceptable
from a user’s perspective. Thus, it is worthwhile to develop approaches to
guarantee application-level correctness in software, instead of hardware,
to reduce cost and save energy. Many previous research efforts presented
solutions to identify parts of programs that may potentially cause
unacceptable results, and placed error detectors to improve reliability.
On the other hand, we observe that loop transformations have the ability
to improve reliability. By applying suitable loop transformations, some
critical instructions may become non-critical. In this paper we propose a
metric to analyze the reliability impact of each loop transformation. Thus,
we can guide a compiler to optimize programs not only for reliability
improvement, but for energy saving. The experimental results show that
our analysis perfectly matches the results of fault injection, and achieves
a 39.72% energy saving while improving performance by 52.16% when
compared with [1]. To our knowledge, this is the first work that considers
a software reliability by loop transformations.

I. INTRODUCTION

Transient hardware fault-induced soft-errors cannot be ignored
due to today’s technology scaling. Some instructions have to be re-
executed once soft-errors are encountered. Since re-execution not only
takes extra time, but extra energy, it results in soaring costs. Software
reliability, i.e., the probability that software can be executed in a
period of time and environment without failure [2], has became a
critical problem in recent years.

Researchers in the hardware field attempt to solve this problem by
developing novel circuits and architectures to protect against soft-error
[3] [4] [5]. The goal of their work is to achieve numerical correctness
of all program outputs, meaning that every bit of every output must
be correct. This kind of correctness is also referred to as architectural-
level correctness. Adopting the mechanism in hardware to assure
architectural-level correctness implies additional hardware and energy
overhead. On the other hand, for some fields of applications, such as
multimedia and machine learning, even if the result is not perfectly
correct, it is still acceptable from a user’s perspective. This kind
of correctness is referred as application-level correctness [6]. We
shall discuss more recent work about application-level correctness
in Section V.

To realize how an application can achieve application-level cor-
rectness, analyzing loop structure is inevitable, as most compu-
tations and memory accesses of a program involve loops. As a
result, most compilers apply several kinds of loop transformations
for improving performance. However, different loop structures have
different impacts on reliability. Consequently, loop transformations
may deteriorate software reliability if the impact of loop structure on
reliability is not taken into account while optimizing the performance.

We use an example to illustrate the impact on reliability by
different loop structures. Figure. 1(a) shows ycc2rgb, an important
kernel in the JPEG decoder, in C language. This program takes an
uncompressed color YCbCr image as input, and outputs an image
with RGB colorspace. Consider a transient fault occurring at the first
iteration of the inner loop in Figure 1(a). It causes one incorrect row
in each primary color of the output image. In this case, we assume
that it is unacceptable. On the other hand, Figure 1(b) presents the
same program, but applies loop fission transformation. The fault still
occurs at the first iteration of the inner loop. However, it results in

1 void ycc2 rgb (char ∗∗ out , i n t char ∗∗ in ,
2 i n t h e i g h t , i n t wid th) {
3 i n t M = h e i g h t ;
4 i n t N = wid th ;
5 char ∗∗ r = o u t ;
6 char ∗∗g = r + M∗N;
7 char ∗∗b = g + M∗N;
8 f o r (i n t i =0 ; i<M; i ++) {
9 f o r (i n t j =0 ; j<N; j ++) {

10 r [i] [j] = y c c 2 r g b r e d (in , i , j) ;
11 g [i] [j] = y c c 2 r g b g r e e n (in , i , j) ;
12 b [i] [j] = y c c 2 r g b b l u e (in , i , j) ;
13 }
14 }
15 re turn ;
16 }

(a) The Original C Code

1 void ycc2 rgb (char ∗∗ out , i n t char ∗∗ in ,
2 i n t h e i g h t , i n t wid th) {
3 i n t M = h e i g h t ;
4 i n t N = wid th ;
5 char ∗∗ r = o u t ;
6 char ∗∗g = r + M∗N;
7 char ∗∗b = g + M∗N;
8 f o r (i n t i =0 ; i<M; i ++) {
9 f o r (i n t j =0 ; j<N; j ++)

10 r [i] [j] = y c c 2 r g b r e d (in , i , j) ;
11 }
12 f o r (i n t i =0 ; i<M; i ++) {
13 f o r (i n t j =0 ; j<N; j ++)
14 g [i] [j] = y c c 2 r g b g r e e n (in , i , j) ;
15 }
16 f o r (i n t i =0 ; i<M; i ++) {
17 f o r (i n t j =0 ; j<N; j ++)
18 b [i] [j] = y c c 2 r g b b l u e (in , i , j) ;
19 }
20 re turn ;
21 }

(b) The C Code with Loop Fission

Fig. 1: ycc2rgb in C

only one incorrect row in primary color r, and this might become
acceptable by considering the correctness threshold of fidelity metric
such as PSNR (Peak Signal-to-Noise Ratio). As a result, although we
introduce more loops to the program in this example, we decrease the
possibility of rollback by reducing the number of instructions affected
by the fault, so the reliability is able to be improved. In this paper,
we present an evaluation metric to analyze the impact on software
reliability due to loop transformations, and further apply suitable loop
transformations for programs to improve program reliability and save
energy. Our overall contributions list follows:

An evaluation metric for loop reliability. We present a metric
by classifying each kind of loop-related instruction to evaluate the
reliability of loops against soft-errors. We show that our classification,
which is based on canonical natural loop structure, identifies the same
set of critical instructions by previous work [7], but more efficiently.

Impact analysis on loop transformation. We analyze the reliability
impact of each loop transformation by using the metric proposed
in this paper, further deriving properties for improving reliability. In
addition, we implemented a fault injector that has ability to evaluate

our analysis. The experimental results also match the analysis we
make in this paper.

Energy saving and performance improvement. Our experimental
results show that by taking the suitable loop transformations according
to our evaluation metric, the rollback frequency of a program can be
reduced when encountering soft-errors. When compared with [1] we
can achieve a 39.72% energy saving while improving performance
52.16% on average. We can also reduce 7.93% energy and improve
17.58% performance compared with the previous work [7].

II. PRELIMINARIES

A. Fault Model

The fault we consider in this paper is single soft-error that results
in transient single bit-flip in registers. It is usually generated by a
cosmos ray, high-energy strikes, or random noise on circuits. For the
fault in registers, one of the bits in the register may be flipped at
any time during software execution and cause silent data corruption
(SDC), or even crash programs. To make a conservative analysis, we
assume that any fault in an instruction causes the worst outcome. In
other words, the assumption is that a faulty instruction will affect the
maximum number of output elements that it can, or may induce a
program crash if the program and the platform that it runs on has no
memory protection.

We want to mention that memories and caches are usually
protected by ECC or parity in modern designs. Moreover, the fault
that occurs at instruction registers, which affects program control flow,
is able to be protected by control flow checking [8] [9]. Thus, the
fault that we consider in this paper happens in the registers that store
instruction inputs and outputs.

B. Critical Instruction

The output of a program is identified as an “elastic output” if the
correctness value of this output that is defined by users is not unique
[7]. Unlike the numerically corrected results required by scientific
applications, the results generated by multimedia applications, such
as images, videos, audios, and so on, do not need to be evaluated
by matching each element precisely with the golden results at every
pixel. Instead, results can only be interpreted qualitatively by a fidelity
metric such as PSNR. In general, given an evaluated metric M , and
an input/output pair of a program (I,O), the output O is identified
as application-level correctness if M(I,O) ≤ T , where T is a user-
specified threshold.

In [7], the authors present a concept “AFFECTER” to identify
critical instructions. Assuming that an elastic output has multiple
elements, then an instruction is called N–AFFECTER of the output if
an error occurring at any instance of the instruction affects at most N
elements of the output. Given an application specific threshold T , an
instruction is defined as a critical instruction if N > T ; otherwise it
is defined as a non-critical instruction. Please note that if the program
or the platform that the program runs on has no illegal memory
access protection mechanism, then the 1–AFFECTER instruction that
performs the memory operation is identified as a critical instruction as
well since it may cause a program to crash. To avoid this problem, [7]
assumes the processor that the program runs on has memory access
protection mechanism, as the case with processors such as SPARC
v9 [10].

We use an example to demonstrate critical instructions. Figure. 2
shows the control flow graph (CFG) of the program presented in
Figure. 1 (a). Blocks in CFG represent basic blocks, while edges
present the control relationship between each basic block. According
to the program, the iteration number of the outer loop and inner
loop are M , and N , respectively. The block “body” contains the
instructions that store output images (we omit details due to page

body:
j = phi [j_1,body], [0,inner,pre]
; converting
j_1 = add j, 1
cond.in = icmp eq i_1, N
br cond.in, inner.exit, body

entry:
zero.out = icmp sgt M, 0
zero.in = icmp sgt N, 0
br zero.out, outer.pre, exit

T F

outer.pre:

br inner.zero.check

inner.zero.check:
i = phi [i_1,inner.exit], [0,outer.pre]
ptr_row = GEP in, i
i_1 = add i, 1
br zero.in, inner.pre,outer.boundary

T F

inner,pre:
br body

T F

inner.exit:
br outer.boundary

outer.boundary:
cond.out = icmp eq j_1, M
br cond.out outer.exit, inner.zero.check

T F

outer.exit:
br exit

exit:
ret void

Inner

loop

Outer

loop

Fig. 2: Control Flow Graph of ycc2rgb

limit). As a result, instructions of the outer loop and inner loop
are 3MN–AFFECTER and 3N–AFFECTER, respectively. We set
the threshold as 3N , meaning that the output image is allowed to
have one row with incorrect R, G, and B color at most. Therefore,
the instructions of the outer loop are critical instructions. On the
other hand, since we assume that our platform has an illegal memory
access protection, the instructions of the inner loop are non-critical
instructions.

III. RELIABILITY ANALYSIS UNDER LOOP TRANSFORMATIONS

In this section we divide instructions into four categories based
on their AFFECTER values [7]. Then we derive the form in terms
of classified loop instructions to represent the critical instruction
percentage of a program. Thus we can further analyze the reliability
impact of each loop transformation by analyzing the mutated critical
instruction percentage.

A. Loop Instruction Classification

The loops we discuss in this paper are canonical natural loops
[11], which have only one entry basic block and one back-edge.
Canonical natural loops consist of three parts: header, body, and exit.
The header and exit parts are used for processing invariant data, such
as iterator initialization and update. The loop body has one or more
blocks, and is used for processing the computation, updating the
iterator, and testing the boundary for branching. Then, we classify
loop instructions based on their use.

Zero Iteration Instruction (ZI): These kinds of instructions are
adopted for testing if the number of iterations of a loop is zero or
not. The loop is ignored in runtime to improve the performance if
the number of iteration is zero. This part is eliminated by compilers
if the iteration number of a loop is a constant value.

The ZI instruction for a loop that effects at most N elements
of outputs is a critical instruction. The reason is that once a ZI
instruction encounters a fault, the whole loop will be skipped in
runtime. In addition, for a ZI instruction in the inner loop of a nested
loop, if the iteration number of the inner loop is determined and will
not be changed, compilers usually place the ZI instruction outside
of the nested loop. For this case, the ZI instruction is always critical
since once it has a fault, there is no chance to re-execute it again in
the rest of iterations. On the other hand, if the iteration number of the
inner loop depends on the outer loop, it has to be determined each

1 e n t r y :
2 (ZI) z e r o . o u t = icmp s g t M, 0
3 (ZI) z e r o . i n = icmp s g t N, 0
4 (ZI) br z e r o . out , o u t e r . pre , e x i t
5 o u t e r . p r e :
6 (J) br i n n e r . z e r o . check
7 i n n e r . z e r o . check :
8 (LI) i = phi [i 1 , i n n e r . e x i t] , [0 , o u t e r . p r e]
9 (P) p t r r o w = GEP in , i

10 (LI) i 1 = add i , 1
11 (ZI) br z e r o . in , i n n e r . pre , o u t e r . boundary
12 i n n e r . p r e :
13 (J) br body
14 body :
15 (LI) j = phi [j 1 , body] , [0 , i n n e r , p r e]
16 (Po) ; c o n v e r t i n g
17 (LI) j 1 = add j , 1
18 (LI) cond . i n = icmp eq i 1 , N
19 (LI) br cond . in , i n n e r . e x i t , body
20 i n n e r . e x i t :
21 (J) br o u t e r . boundary
22 o u t e r . boundary :
23 (LI) cond . o u t = icmp eq j 1 , M
24 (LI) br cond . o u t o u t e r . e x i t , i n n e r . z e r o . check
25 o u t e r . e x i t :
26 (J) br e x i t
27 e x i t :
28 r e t vo id

Fig. 3: ycc2rgb in LLVM IR

time before the iteration, then the ZI instruction must be placed right
before the inner loop. Therefore, the ZI instruction is N–AFFECTER
where N is the maximum iteration number of the inner loop.

Loop Iteration Instruction (LI): Loop iteration instructions
are the instructions that are related to the control flow of the pro-
gram. They include iterator initialization, update, and condition. For
multimedia-related applications, an iterator of the loop that contains
outputs is usually also used for indexing elements of outputs. We
use LIm to represent LI instructions that related to memory access.
As a result, LIm instructions are always critical if the system which
the program runs on has no illegal memory protection. On the other
hand, with a memory-accessing safe mechanism, LI instructions are
the same AFFECTER of the loop that they belong to.

Jump (J): For every single canonical nature loop, there are
always two jump instructions. One jumps from loop header into
loop body; another jumps outside of the loop from the loop exit
block. As mentioned in Section II-A, we assume that all branch
targets are protected by control flow checking technology. Thus, jump
instructions is always non-critical under this assumption.

Processing (P): The rest of instructions that relate to the outputs
are identified as processing instructions. An instruction is defined as
processing instruction Pi of loop i if it 1) does not belong to nigher
ZI nor LI instructions, 2) has data dependency to loop i, and 3)
has the same N–AFFECTER as loop i. Based on the definition, the
processing instruction Pi is part of the loop invariant code of loop
i. In addition, for the processing instruction in the innermost loop,
which has dependency with the output, we define it as Po instruction
since it is always 1–AFFECTER.

A part of Pi that is related to memory access may cause a program
crash if the system that the program runs on has no illegal memory-
accessing protection. As a result, we further classify the process
instructions of loop i as memory-related processing (Pm

i) and data
processing (P d

i) instructions. The Pm
i instruction is identified as a

critical instruction with an unprotected system.

We use Figure 3 to demonstrate loop instruction classification.
Figure 3 shows ycc2rgb in LLVM intermediate representation (IR)
for LLVM compiler infrastructure [11]. The beginning of each line

indicates the type of instruction. Since the instruction at line 9 is a
N–AFFECTER processing instruction and has data dependency with
the inner loop, it is identified as a P d

inner instruction. In addition, for
the processing instructions at line 16, we identify these instructions
as Po instructions since they are 1–AFFECTER.

B. Critical Loop Identification

We define critical loop as a N–AFFECTER loop where N is
larger than the user-defined threshold T ; otherwise it is defined as
non-critical loop. To analyze the reliability of loops in a program, we
want to identify the relationship between loops and program outputs,
which are arrays for multimedia applications. Algorithm 1 shows our
methodology. We identify loop AFFECTER based on the following
two cases.

First, if a loop writes the value to program outputs, then the
AFFECTER of this loop is the product of the iteration numbers of
its inner loops and itself, because the loop might effect at most N
program output elements by N iterations. Therefore, we first generate
a set of loops, LoopwOutputSet, to collect the loops that write the
value to program outputs (line 2). Then we traverse these loops to
compute the AFFECTER (line 3-9). Second, for the loop that does
not write the value to program outputs, if the value produced by this
loop has dependency with the program outputs, the AFFECTER of
this loop and its inner loops are the same as the following loop with
the same depth that writes the value to program outputs. For example,
if the value produced by the loop LA has dependency with the loop
LB , which writes to the program output, then this value is an invariant
value for loop LB . Thus, if loop LB is a N–AFFECTER loop, then
loop LA is a N–AFFECTER loop as well. To deal with this case,
we record the AFFECTER of each depth (line 8), and set the loops
that do not write the value to outputs as the AFFECTER based on
their depth (line 10-15). Finally, we identify critical loops by their
AFFECTER (line 16-20).

Algorithm 1 Critical Loop Identification

Input: A set of loops and output instructions of a program.
Output: A set of critical loops.

1: Set DepthIterNum as 0
2: LoopwOutputSet← getLoopSet(OutputInst)
3: for each Loop ∈ LoopwOutputSet do
4: Loop.Aftr ← Loop.IterNum
5: for each InnerLoop ∈ Loop do
6: Loop.Aftr ← Loop.Aftr × InnerLoop.IterNum
7: end for
8: DepthIterNum[Loop.Depth]← Loop.Aftr
9: end for

10: for each Loop /∈ LoopwOutputSet and hasDep(OutputInst)
do

11: Loop.Aftr ← DepthIterNum[Loop.Depth]
12: for each InnerLoop ∈ Loop do
13: InnerLoop.Aftr ← DepthIterNum[Loop.Depth]
14: end for
15: end for
16: for each Loop do
17: if Loop.Aftr > Threshold then
18: Loop.Crit← true
19: end if
20: end for

C. Reliability Analysis Under Loop Transformations

In this section we analyze the reliability of each loop transfor-
mation. The reliability we mention in this paper is defined to be
the percentage of the critical instructions of the total instructions
which have dependency with the outputs. Specifically, the reliability

for program R(P) is defined as:

R(P) = 1− CP (P) = 1−
CIP

TIP
(1)

where CP (P) is the critical instruction percentage of program P ,
CIP is the number of critical instructions, and TIP is the number
of total instructions that have dependency with the program outputs.
We use “total instruction” in the rest of this paper to be concise. For
the instruction that has no dependency with program outputs, we do
not consider them in this paper since they are able to be eliminated
by compiler technologies such as code pruning.

According to Eq. 1 and Section III-A, for a program which runs
on a system with illegal memory-accessing protection, LIj , ZIj , and
P d
j instructions for critical loop j are critical because they are N–

AFFECTER where N is the iteration number of loop j, which is
larger than the threshold defined by a user. Therefore, we are able to
derive the critical instruction percentage as follows:

CPw(P) =
(
∑CL

i=0 ZIi + LIi + Pi) + (
∑SNL

j=0 ZIj)

(
∑TL

i=0 Ji + ZIi + LIi + Pi) + Po

(2)

where CL is the total critical loop number in the program, and
SNL is the non-critical loop with invariant (static) iteration number
in runtime.

Prior work [7] proposed an algorithm, CIAP (Critical Instruc-
tion Analysis and Protection), to compute the AFFECTER of each
instruction, and further identify whether the instruction is critical or
not. However, the time complexity of the algorithm that [7] developed
is O(N3) where N is the number of basic blocks. Meanwhile, our
algorithm needs only to identify critical loops, so the time complexity
is O(N2) where N is the number of loops that have dependency
with the output. Consequently, our algorithm is more efficient than
CIAP, while guaranteeing the equivalent critical instruction set as
CIAP algorithm.

Theorem 1: Our proposed methodology has the same critical
instruction set as the CIAP algorithm.

Proof: The CIAP algorithm identifies an instruction as a critical
instruction based on the following rules:

1) The instruction is N–AFFECTER of the output if N >
T , where N is the number of effected instructions by the
instruction, and T is the user-defined threshold.

2) The instruction has dependency with the exit branch of the
loop that contains at least one critical instruction.

If an instruction I is identified as a critical instruction by rule (1)
of the CIAP algorithm, then

∏n
k=1 IterNum(DL(k)) > T , where

DL is a set of loops that contains the output but not I . In this case,
I will be classified as one of three instructions:

1) Pi of loop i, the outermost critical loop of DL.
2) ZIi of loop i.
3) ZIj of loop j, non-critical loop j with static iteration

number within nested loop i.

Since all of these instructions are critical instructions, I is identified
as critical by our method as well, and vice versa.

If an instruction I is identified as a critical instruction by rule
(2) of CIAP algorithm, then it has dependency with the exit branch
of the loop. As a result, I will be classified as an LIi instruction of
loop i by our method. Furthermore, since I is critical as identified by
CIAP, loop i must have at least one critical instruction. It implies that
loop i is a critical loop, so LIi instructions of loop i are identified
as critical instructions by our method as well, and vice versa.

In addition, we define the different critical instruction percentage
after applying a loop transformation as:

CP
′
(P) =

∆CIP

∆TIP
(3)

Then, we have the following theorem.

Lemma 1: The critical instruction percentage is reduced after
applying a loop transformation if and only if:

∆CIP

∆TIP
<

CIP

TIP
(4)

Proof: The condition of reducing the critical instruction percent-
age after applying a loop transformation is:

∆CIP + CIP

∆TIP + TIP
<

CIP

TIP
(5)

which is equivalent to the following equation:
∆CIP

∆TIP
<

CIP

TIP
(6)

We named Eq. 4 the “general form” since it can be used for any
loop transformations to evaluate the reliability impact without loss of
generality.

Subsequently, we analyze the reliability of each loop transfor-
mation under the system with an illegal memory-access protection
mechanism based on Eq. 2. The reliability without memory protection
mechanism is similar in concept, so we do not describe it in this
paper. We will show that some loop transformations have recognized
properties, but some others do not. For the transformations that
cannot be concluded by their properties, we study the mutated
critical instructions and apply the general form to analyze them. In
addition, although we just describe some of the most widely used
loop transformations due to page limit, our analyzed methodology
can be easily extended for all other transformations.

1) Loop Tiling: Loop tiling, or loop blocking transformation, is a
widely used loop transformation for data locality improvement. The
order of data access can be rearranged to fit the size of a cache
line by adding inner loops. Specifically, we add K × (LI + J +
ZI) instructions where K is the number of inner loops that we add.
Because the block size that we choose for loop tiling transformation
is usually not very large for the size of a cache line, the added inner
loops are usually non-critical loops.

The reliability impact of loop tiling transformation depends on the
AFFECTER of inner loops after applying the transformation. Specifi-
cally, the AFFECTER of nested loops after loop tiling transformation
is shown as follows:

AFFECTERtiling(i) = B
level(i) × AFFECTER(i) (7)

where B is the size of the block we choose for tiling, and loop i is
an inner loop of the nested loop; level(i) means the level of loop i.
We define the outermost loop as level 0, and the innermost loop as
level Lv − 1 where Lv is the maximum loop nesting depth.

Theorem 2: Loop tiling guarantees reliability improvement if and
only if no inner loop has changed from a non-critical loop to a critical
loop.

Proof: The different instructions after applying loop tiling trans-
formation can be represented as follows.

∆CI =

Lv∑
j=k

(LIj + Pj)

∆TI = N × (LI + J + ZI)

(8)

where k is the outermost critical loop after applying loop tiling
transformation. Therefore, the reliability can be improved if k = Lv,

meaning that no inner loops changed from non-critical loops to critical
loops. Otherwise, even if only one inner loop changed to critical, it
may contain a lot of instructions that changed to critical as well. In
this case, we have to use the general form to evaluate the reliability.

Take the case in in Figure 1 (a) as an example, loop i and loop j in
Figure 1 (a) are (3×M×N) and (3×N)–AFFECTER, respectively.
However, once we apply loop tiling transformation with block size
B × B, loop i is still (3 ×M × N)–AFFECTER though loop j is
changed to (3 × B × N)–AFFECTER. This may cause loop j to
switch from non-critical to critical.

2) Loop Peeling: Loop peeling is a special case of loop splitting.
It moves the first or the last iteration of a loop outside the loop so that
some other loop transformations (such as loop fusion) are available
to be applied. Since this transformation is usually applied for the
innermost loop, it only adds the processing instructions that relate to
data access (P d) for the first or the last iteration of the loop, and
any other loop instructions (LI) are not modified. Thus, loop peeling
always improves reliability.

Theorem 3: Loop peeling always improves reliability.

Proof: The different instructions after applying loop peeling
transformation can be represented as follows.

∆CI = 0

∆TI = Po
(9)

Loop peeling for the innermost loop only adds data processing
instructions P d, and the innermost loop must be a non-critical loop or
the application has no chance to achieve application-level correctness.
As a result, the number of total static instructions has increased while
keeping the number of critical instruction unchanged. In other words,
loop peeling transformation reduces the critical instruction percentage
and thus improves reliability.

Furthermore, from Theorem 3, a program without any loop is
more reliable compared with the the same program but with loops,
because it has no loop instructions so that all instructions are either
0–AFFECTER or 1–AFFECTER.

3) Loop Permutation (Interchange): Loop permutation is a loop
transformation for a nested loop that changes the order of two or
more iterators. Since it only changes the order of the inner loops of a
nested loop, it does not change the instruction count of the program.
Instead, it may change the AFFECTER of each loop. As a result,
loop permutation can improve reliability when it changes one or more
critical loops to non-critical loops.

Theorem 4: Loop permutation improves reliability if it reduces
the critical loop number.

Proof: The number of different critical instructions after applying
loop permutation can represented as follows:

∆CI =
∆CL

|∆CL|
(

|∆CL|∑
i=0

ZIi + LIi + Pi)+

∆SNL

|∆SNL|
(

|∆SNL|∑
j=0

ZIj)

∆TI = 0

(10)

where ∆CL and ∆SNL represent the different number of critical
loops and non-critical loops with a static iteration number. Since
∆TI = 0, we can directly analyze the reliability by examining if
the number of critical instruction has been reduced (∆CI < 0) or
not.

−
∆CL

|∆CL|

|∆CL|∑
i=0

(ZIi + LIi + Pi) >
∆SNL

|∆SNL|

|∆SNL|∑
j=0

(ZIj) (11)

As we can see, Eq. 11 is satisfied if and only if ∆CL < 0. Since
ZI + LI + P > ZI , even if some loops with static trip count have
been changed from critical (CL) to non-critical (SNL), the reliability
can still be improved.

4) Loop Unrolling: Loop unrolling is a loop transformation
technology used for optimizing program execution performance by
reducing total iteration number while increasing the instruction count.
As a result, loop unrolling transformation is a time-space trade-off
and should be determined by either compiler or programmer. This
transformation affects program reliability based on the AFFECTER of
unrolled loop. We analyze the reliability of each situation as follows.

Unroll the innermost loop: The different instructions after
unrolling the innermost loop is shown as follows.

∆CI = 0

∆TI = N × Po
(12)

where N is the unrolling times. According to Eq. 12, the only
instructions that we increase when unrolling the innermost loop is
processing instructions Po, and Po instructions are always non-critical
since they are 1–AFFECTER. As a result, we can always improve
program reliability by unrolling the innermost loop. On the other
hand for the loop which is not the innermost loop, we separate it into
two cases as follows.

Unroll a non-critical loop: If we attempt to unroll a non-critical
loop within a nested loop, then we duplicate its inner loops which
must also be non-critical loops. The different instructions of unrolling
a non-critical loop is formed as follows.

∆CI = 0

∆TI =

∆L∑
i=0

(LIi + Ji + Pi) + N × Po
(13)

For the system with memory protection, only ZI instructions
might be critical instructions in a non-critical loop. However, we do
not duplicate ZI instructions when unrolling loops since compilers
usually let all duplicated loops share ZI instructions. As a result, we
are able to improve reliability by unrolling non-critical loops.

Theorem 5: Unrolling non-critical loops or the innermost loop
can always improve program reliability.

Unroll a critical loop: The reliability impact of unrolling a
critical loop depends on the number of unrolled non-critical inner
loops since we may duplicate zero or more critical and non-critical
loops. The different instructions after unrolling a critical loop is shown
as follows.

∆CI =

∆CL∑
i=0

(LIi + Pi)

∆TI =
∆L∑
i=0

(LIi + Ji + Pi) + N × Po

(14)

where ∆CL is the different number of critical loops. Since unroll
a critical loop cannot reduce the number of critical loops, ∆CL must
be a positive value. We can see that unrolling a critical loop might
duplicate its inner loops so that it increases every kind of instruction
except ZI instructions, because they shared by all duplicated inner
loops. As a result, this highly depends on the case of program and
can only be evaluated by Eq. 4, the general form.

5) Loop Fission and Fusion: Loop fission transformation breaks
a loop into multiple loops to split the original loop body into several
parts. This transformation is primarily used for parallelizations since
each independent loop can be allocated to a different thread to
improve performance. On the other hand, the opposite of loop fission
is loop fusion transformation. It merges multiple loops with same
structure and index range into one loop. For the case that the body
of each loop accesses the data within a dense range of memory,

merging these bodies can improve data locality and further improve
the performance.

The impact on reliability of loop fission also depends, even though
each critical loop has the opportunity to be changed to a non-critical
loop. The different critical instructions and total instructions after
applying loop fission transformation are shown below:

∆CI =
∆CL∑
i=0

(LIi + Pi) +
∆SNL∑
j=0

(ZIj)

∆TI =
∆TL∑
i=0

(LIi + Ji + Pi)

(15)

where ∆CL is the number of changed critical loops, and ∆TL is
the number of increased loops. It is no doubt that the reliability is
improved if we eliminate all critical loops. However, since the instruc-
tion counts of each loop body vary, even if we significantly reduce the
number of critical loops, we cannot guarantee that the reliability can
be improved as long as there is at least one critical loop in the nested
loop. Consequently, we cannot derive a strong relationship between
loop fission transformation and program reliability. Instead, we have
to evaluate the changed instructions to realize the reliability impact
relying on the general form, Eq. 4, as well.

Theorem 6: Loop fission transformation is guaranteed to improve
the reliability only if the loop that applied the transformation no
longer has any critical loops.

Similarity, loop fusion transformation is the opposite operation of
loop fission. The corresponding ∆CI and ∆TI are shown below.

∆CI =

∆CL∑
i=0

(LIi + Pi)

∆TI =

∆TL∑
i=0

(LIi + Ji + Pi)

(16)

Since it always reduces instruction count, both ∆CL and ∆TI are
less or equal to zero. As a result, the reliability is improved once it
eliminates one or more critical loops.

Theorem 7: Loop fusion transformation is able to improve the
reliability if it eliminates one or more critical loops.

D. Summary

In Table I we summarize the concepts that we analyzed in this
section. For most loop transformations introduced in this section, we
infer the necessary constraints to improve program reliability. Even
for other transformations that have no clear properties of reliability
impact, such as unrolling critical loops or splitting loop bodies, we
still have the ability to evaluate them by using the general form.

TABLE I: Analysis Summary

Transformation Guaranteed to improve reliability

Tiling No inner loop changed from non-critical loop to critical
loop.

Peeling Always improves.

Permutation Reduces critical loop number.

Unrolling Unrolls the innermost or non-critical loops.

Fission Eliminates all critical loops for applied nested loop.

Fusion Reduces critical loop number.

IV. EVALUATIONS

The applications that we adopt for evaluation are represented as
LLVM intermediate representations (IR) which are provided by the
LLVM compiler infrastructure [11]. The LLVM IR is a static single
assignment representation that essentially models a RISC processor

with infinite registers. This form is widely adopted since it makes use-
def chains explicit so that developers are able to analyze and optimize
programs easily. We assume that our applications are executed on
commercial off-the-shelf processor platforms with ECC memory
protection. We use the Multi2Sim simulator system [12] with 64KB
L1, 4MB L2 caches, to evaluate performance, and adopt McPAT [13]
for measuring energy overhead.

A. Fault Injection

To evaluate the critical instruction percentage of a program, we
have to evaluate the AFFECTER of each instruction and identify if
the instruction is critical or not. However, if we adopt random fault
injection to inject a fault into an instruction, the fault might be masked
by the following instructions and cannot be observed. For example,
the instruction Ra = Rb&0x1 ignores the value of register Rb except
for the least significant bit. As a result, even if one bit of Rb has been
flipped due to a soft-error, the value of Ra is still correct if the error
bit of Rb is not the least significant bit. We define the instruction that
has ability to mask faults as a maskable instruction. To avoid this
problem, we can keep injecting faults into a certain instruction until
the fault has been observed through the output. However, it may take
too much time to evaluate all instructions, and we cannot differentiate
between a non-observable fault and a 0–AFFECTER. As a result, we
identify the instructions set, which the faults occurring in instructions
within the set may be masked by the specific instruction. Then we
inject an observable fault into instructions that will not be masked by
others. By the fault injector, we are able to evaluate the AFFECTER
of all instructions.

TABLE II: Maskable Instructions

Categories Sample instructions
Logical and, or, xor

Shift shl, lshr
Conversion* trunc, fptosi
Condition icmp, fcmp

* Doesn’t include bit-extension instructions.

We summarize maskable instructions in Table II. Note that some
conversion instructions, such as bit truncation, have the ability to mask
faults; however, others, such as bit-extension, cannot. The reason is
that this kind of instruction reserves all bits from input, so it does
not eliminate the error from the input register.

The algorithm of the fault injection is presented in Algorithm 2.
The fault injector first initializes a set, ToInjectSet, to collect
instructions that will be injected a fault (line 1). Then it generates a
golden result to be compared later (line 2). Subsequently, we traverse
the dependency graph of each instruction I from the program output
to see if instruction I reaches a maskable instruction MI based on
Table II before reaching the program output or not (line 6). If yes,
then the fault injector will not inject a fault into instruction I since
it will likely be masked by maskable instruction MI . Instead, the
fault injector puts instruction I to the group of maskable instruction
MI (line 8). A group is a set of instructions whose faults might be
masked by the same instruction. On the other hand, if instruction I
does not reach any maskable instruction, then it must have capability
to propagate a fault to the program output. As a result, fault injector
puts instruction I to ToInjectSet (line 10) and creates a group
of instruction I (line 11). We want to mention that if a maskable
instruction MIA reaches another maskable instruction MIB , then
since we traverse instructions from the program output, MIA will be
put into the group of MIB . Thus, the rest instructions which reach
maskable instruction MIA will be put into the group MIB as well.

After traversing instructions, the fault injector injects a fault
to each instruction in ToInjectSet and computes the incorrect
result number by comparing the result with the golden one as the
AFFECTER. Finally the fault injector assign the AFFECTER, Aftr,
of all instructions in the group (line 15-19). By adopting the fault

injector, we have the capability of knowing the accuracy AFFECTER
of every instruction, and further, can evaluate the properties presented
in Section. III-C.
Algorithm 2 Fault Injection and Simulation for Critical Analysis

Input: An instruction level program P .
Output: The AFFECTER of each instruction.

1: ToInjectSet← NULL
2: GoldenResult← Execute program without fault
3: ToTraverseSet.push(Output(P))
4: while ToTraverseSet! = NULL do
5: I = ToTraverseSet.pop
6: MI = reachMaskableInstruction(I)
7: if MI! = NULL then
8: Group(MI).add(I)
9: else

10: ToInjectSet.add(I)
11: CreateGroup(I)
12: end if
13: ToTraverseSet.push(I.input)
14: end while
15: for each I ∈ ToInjectSet do
16: Inject a fault into I
17: Result← Execute program with a fault
18: Group(I).Aftr ← Diff(Result,GoldenResult)
19: end for

B. Experimental Results

1) Loop Impact Analysis: We use ycc2rgb as the case in this
experiment to evaluate the consistency of our analysis with the
fault injector. We manually perform several loop transformations and
evaluate the reliability impact based on the analysis that we presented
in Section III. Table III shows the experimental results. Columns 2-3
in Table III show the number of total instructions and basic blocks,
respectively. Column 4 provides the critical loop number, while
column 5 represents the critical instruction count evaluated by the
fault injector. Column 6 presents the critical instruction percentage of
each transformation which is inversely proportional to the reliability.

TABLE III: Results of Fault Injection

Trans-
formation #Inst #BB #CL #CI CP

Baseline 176 13 2/2 56 31.82%
Unrolling* 433 20 5/5 86 19.86%

Tiling 244 19 2/4 70 28.69%
Fission 375 35 3/6 62 16.53%
Peeling 219 13 2/2 47 21.46%

Permutation 176 13 2/2 64 31.82%
Combination 905 56 8/13 182 20.11%
* Here we unroll outer loop (critical) by 4 times.

For loop unrolling and loop fission, according to general form,
∆CI/∆TI for both cases are smaller than the baseline so that the
reliability is able to be improved. Loop tiling keeps the reliability of
the inner loop unchanged, so reliability is improved by Theorem 2.
Loop peeling always improves reliability based on Theorem 3. On
the other hand, loop permutation does not reduce the number of
critical loops, so we cannot benefit from Theorem 4. Therefore, the
reliability remains the same. Finally, we perform a combinational case
by applying tiling, peeling, and unrolling transformations in order.
Since applying tiling and peeling to ycc2rgb improve reliability, the
combinational case has lower critical instruction percentage compared
with the cases applied the transformations individually. However, we
unroll the outermost loop, which is a critical loop, after applying these
two transformations, and unroll a critical loop degrades reliability in
this case. Consequently, depending on different program and applied
loop transformations, the reliability might be improved or degraded.
In addition, the order of applied transformations also influences the

reliability.

2) Energy Efficiency Analysis: To measure how loop transforma-
tion affects energy efficiency, we inject faults into the program by
random fault injection to simulate practical situations; i.e., faults may
be masked by maskable instructions. As a result, for each instruction
in a program, we insert a faulty instruction with a given soft-error
probability to trigger it, so the fault is probably activated in a random
instance of an instruction. To facilitate the experiment, we use a
0.01% soft-error rate. We adopt the error detector proposed by [1]
which duplicates instructions and compare results before writing into
memory. If the fault is detected, then the program rolls back to the
beginning of the basic block and executes again.

We perform our experiment for multimedia applications from
MiBench [14] and MediaBench II [15]. Ycc2rgb, IDCT, and Huffman
are important kernels of the JPEG decoder. Susan is an image
recognition program for detecting edges and corners in images.
ADPCM, MPEG2, and H264 are decoders for either speech or videos.
Rician is a program used for MRI denoising. All applications are com-
piled with −O2 optimization as baselines, and applied suitable loop
transformations for observing the effect of energy and performance.

TABLE IV: Energy and Performance Comparison

Benchmark CI
Red.

Energy
saving

Perf.
improvement

[1] [7] [1] [7]
Ycc2RGB 36.80% 51.45% 3.71% 70.93% 7.45%

IDCT 18.10% 37.47% 1.25% 54.36% 6.76%
Huffman 6.85% 49.87% 3.67% 44.69% 0.34%
ADPCM 78.06% 42.27% 22.78% 83.57% 50.98%
Rician 42.66% 64.62% 15.21% 54.30% 27.87%

Susan-edges 43.05% 22.39% 10.10% 53.97% 20.02%
Susan-corner 45.48% 55.90% 5.95% 41.32% 25.91%

MPEG2 59.61% 27.55% 6.95% 58.08% 21.39%
H264 53.06% 5.95% 1.76% 15.17% -2.51%

Average 42.63% 39.72% 7.93% 52.16% 17.58%

Table IV shows energy saving and performance improvement
while achieving application-level correctness with respect to [7]
and [1]. For each application, we set the threshold as 10%. Col-
umn 2 shows the ratio of reducing critical instructions after loop
transformations. Since we spread the impact of critical instructions
efficiently, we are able to reduce 42.63% of critical instructions
on average. Columns 3-4 and columns 5-6 provide energy saving
and performance improvement ratios of each case compared with
previous works, respectively. As can be seen, as long as we reduce
the percentage of critical instructions, we also reduce the overhead of
error detectors. Consequently, energy and performance are improved
due to roll back frequency reduction. Here we mention that since [1]
attempts to achieve numerical correctness, it treats all instructions as
critical instructions. Therefore, error detector induced overhead causes
relatively poor results for performance and energy.

For some cases that are mainly composed by non-critical loops,
such as IDCT and Huffman, even if we apply several suitable loop
transformations for reliability improvement, the benefit is limited. On
the other hand, the kernel of ADPCM has no nested loop, so we
can only apply loop unrolling and loop peeling. Despite that, since
we unroll the “innermost” loop when we unroll a single-level loop,
the reliability is advanced based on Theorem 5. Unlike ADPCM,
Rician has many critical nested loops, implying that we have more
opportunities to reduce the critical instructions percentage. Similarly,
the kernels in Susan have a lot of affine access within critical nested
loops, which heavily affects control flow. In this case, we mainly
adopt loop tiling to reduce the critical instruction percentage. In
addition, the kernel in MPEG2 performs some blocking computations
by using loops with constant iteration numbers. For this case, we
fully unroll these loops, which results in both energy saving and
performance improvement. In contrast, H264 has many huge loops

for processing the whole video streaming. Thus, even though our
methodology reduces a considerable critical instruction percentage,
the increased instructions cause non-negligible overhead and cannot
be eliminated by reducing roll back frequency. Accordingly, the
performance and energy cannot be improved well.

V. RELATED WORKS

Recent work has proposed solutions for analyzing soft-error
problems to ensure application-level correctness by developing fault
injectors. Fault injectors help researchers determine the critical in-
structions that either cause program crashes or generate unacceptable
output to analyze program reliability. LLFI [16] and KULFI [17] are
high-accuracy, open-source LLVM fault injectors used for randomly
injecting faulty instructions into programs in LLVM IR. [18] designed
a fine-grained soft-error fault injector, F-SEFI, which leverages the
virtual machine and its hypervisor to reduce environment and input
data dependency while injecting faults into programs. Relyzer [19]
identified equivalent fault groups so that it can reduce the complexity
of injecting faults. Based on the contributions of fault injectors,
researchers are able to further improve the soft-error resilience of
applications. [20] generalized some classes of faulty instructions that
lead to error derating. [21] targeted improving program reliability by
exploring fault masking. The author in [21] categorized instructions
that have the ability to mask faults, and further presented an opti-
mization scheme that can be integrated into compilers to improve
program reliability by using the characteristics of fault masking and
error statistics from a fault injector.

On the other hand, some research aims to realize egregious
positions or critical instructions in a program by using fault injection
or static program analysis, and inserts detectors/protectors into the
program to reduce SDC (silent data corruption) in runtime. [6] set
the checkpoint periodically to PC, register file, and program stack
at the top of each loop manually. [22] analyzed the program-level
properties of SDC and inserted a low-cost detector, assertion, into
the program. [23] provided an analysis and transformation method to
categorize computations and protect them by using either instruction
duplication or value checking. [24] presented ranking and selection
algorithms based on the result of fault injectors for placing detec-
tors to cover a wide range of SDCs. [25] developed a compiler-
time algorithm to instrument checksum code into applications for
detecting memory errors. [7] presented a novel concept of critical
instruction definition, and used a program dependency graph to
identify critical instructions. Furthermore, critical instructions were
protected by duplicating monitoring these instructions in runtime.
The objective of all these research work mainly focus on identifying
critical regions, inserting error detectors and recovery mechanisms
to ensure application-level correctness. In contrast, in addition to
identifying critical loops accurately, our methodology reduces the
number of critical loops by loop transformations. Consequently, the
cost of code instrumentation can be reduced as well.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present a metric to analyze soft-error induced
reliability impact for loop transformation based on canonical natural
loop. We first classify loop instructions relying on their use. Ac-
cording to the classification, we further derive critical instruction
percentage to represent software reliability. Then we are able to
analyze the impact of every loop transformations. Our analysis
result shows that every loop transformation has the potential to
improve reliability under some specific conditions. Equipped with
such analysis capability, we evaluate available transformations for
programs and apply suitable transformations to advance reliability.
Our experimental results show that applying suitable transformations
benefit not only reliability but also energy.

There are several extension researches that we can explore in
the future. Since our methodology works well with single thread

programs, and the problem with multi-threading becomes more com-
plicated, we will extend our methodology to work adequately for
parallel programs. In addition, we plan to adapt the methodology for
broadening the target application domains so that it can be adopted for
other important applications such as machine learning and artificial
intelligent applications.

VII. ACKNOWLEDGMENT

This work is partially supported by C-FAR, one of six centers of
STARnet, a Semiconductor Research Corporation program sponsored
by MARCO and DARPA, and by NSF grants CCF-0903541, and CF-
1524127. The authors would like to thanks Louis-Noel Pouchet for
his valuable comments.

REFERENCES

[1] N. Oh et al., “Error detection by duplicated instructions in super-scalar
processors,” IEEE Transactions on Reliability, vol. 51, no. 1, pp. 63–75,
2002.

[2] M. R. Lyu et al., Handbook of software reliability engineering. IEEE
computer society press CA, 1996, vol. 222.

[3] N. Avirneni et al., “Low overhead soft error mitigation techniques for
high-performance and aggressive systems,” in DSN, 2009, pp. 185–194.

[4] H.-M. Chou et al., “Soft-error-tolerant design methodology for balanc-
ing performance, power, and reliability,” IEEE Transactions on Very
Large Scale Integration Systems, 2014.

[5] S. Mitra et al., “Combinational logic soft error correction,” in ITC,
2006, pp. 1–9.

[6] X. Li et al., “Application-level correctness and its impact on fault
tolerance,” in HPCA, 2007, pp. 181–192.

[7] J. Cong et al., “Assuring application-level correctness against soft
errors,” in ICCAD, 2011, pp. 150–157.

[8] D. S. Khudia et al., “Low cost control flow protection using abstract
control signatures,” in LCTES, 2013, pp. 3–12.

[9] N. Oh et al., “Control-flow checking by software signatures,” IEEE
Transactions on Reliability, vol. 51, pp. 111–122, 2002.

[10] “The sparc architecture manual, version 9,” http://developers.sun.com/
solaris/articles/sparcv9.pdf.

[11] C. Lattner et al., “LLVM: A compilation framework for lifelong
program analysis & transformation,” in CGO, 2004, pp. 75–86.

[12] R. Ubal et al., “Multi2sim: A simulation framework for cpu-gpu
computing,” in PACT, 2012.

[13] S. Li et al., “Mcpat: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in MICRO, 2009,
pp. 469–480.

[14] M. R. Guthaus et al., “Mibench: A free, commercially representative
embedded benchmark suite,” in WWC, 2001, pp. 3–14.

[15] J. E. Fritts et al., “Mediabench ii video: Expediting the next generation
of video systems research,” Microprocessors and Microsystems, vol. 33,
no. 4, pp. 301 – 318, 2009.

[16] A. Thomas et al., “Llfi: An intermediate code level fault injector for
soft computing applications,” SELSE, 2013.

[17] V. Sharma et al., “Towards formal approaches to system resilience,” in
PRDC, 2013, pp. 41–50.

[18] Q. Guan et al., “F-sefi: A fine-grained soft error fault injection tool for
profiling application vulnerability,” in IEEE International on Parallel
and Distributed Processing Symposium, 2014, pp. 1245–1254.

[19] S. Sastry Hari et al., “Relyzer: Application resiliency analyzer for
transient faults,” MICRO, vol. 33, no. 3, pp. 58–66, 2013.

[20] J. Cook et al., “A characterization of instruction-level error derating and
its implications for error detection,” in DSN, 2008, pp. 482–491.

[21] M. Shafique et al., “Exploiting program-level masking and error propa-
gation for constrained reliability optimization,” in DAC, 2013, pp. 1–9.

[22] S. K. S. Hari et al., “Low-cost program-level detectors for reducing
silent data corruptions,” in DSN, 2012, pp. 1–12.

[23] D. Khudia et al., “Harnessing soft computations for low-budget fault
tolerance,” in MICRO, 2014, pp. 319–330.

[24] A. Thomas et al., “Error detector placement for soft computation,” in
DSN, 2013, pp. 1–12.

[25] S. Tavarageri et al., “Compiler-assisted detection of transient memory
errors,” SIGPLAN Not., vol. 49, no. 6, pp. 204–215, Jun.

