
GRT: a Reconfigurable SDR Platform with High
Performance and Usability ∗

Tao Wang *, Guangyu Sun, Jiahua Chen, Jian Gong, Haoyang Wu, Xiaoguang Li
Center for Energy-Efficient Computing and Applications, School of EECS, Peking University

{wangtao, chenjiahua, jian.gong, wuhaoyang, xiaoguangli2010}@pku.edu.cn

Songwu Lu *, Jason Cong *
UCLA Computer Science Department

{slu, cong}@cs.ucla.edu

* PKU-UCLA Joint Research Institute in Science and Engineering

ABSTRACT
The importance of software-defined radio (SDR) continues
to increase. However, existing SDR platforms become less
efficient as the wireless industry moves towards Gigabit WiFi.
In this work, we propose a novel reconfigurable SDR plat-
form named GRT. With the help of reconfigurable archi-
tecture and corresponding software support, SDR designs
on GRT can leverage high performance of the underlying
hardware and provide sufficient usability, including the sup-
port for efficient modular design, commodity interface, good
programmability, code reusability, etc. We implement an
802.11a/g WiFi system on GRT to evaluate its performance.
The results demonstrate that GRT can achieve a substan-
tial improvement in usability while still satisfying the per-
formance requirement.

1. INTRODUCTION
With the rapid development of wireless systems, there is

an increasing requirement for fast validation and prototyp-
ing of various innovations in underlying wireless layers, such
as the media access control layer (MAC) and physical layer
(PHY), which are normally hidden and integrated firmly in
conventional wireless adapters. Such a requirement, there-
fore, results in the rising importance and research interest in
software-defined radio (SDR) systems. This is because SDR
provides an opportunity for efficient modification and exten-
sion of algorithms and/or protocols in underlying wireless
layers by programming. At the same time, SDR facilitates
customized wireless systems that are tailored for extra low
power, low latency, or long communication range. In addi-
tion, it enables new techniques such as the deep cross-layer
optimization [14, 15, 18, 19, 20, 21, 22, 23].

Recently, various SDR platforms have been proposed [1, 3,
5]. However, as the wireless industry moves towards Gigabit
WiFi, current SDR platforms cannot fully satisfy both per-
formance and usability requirements at the same time. For
example, GNU Radio [1], the most widely used SDR plat-
form, provides high programmability and rich legacy codes,
but its performance (around several Mbps throughput [2]),
however, is lower than the industry standard by several or-
ders of magnitude. Other SDR platforms may achieve higher
throughput by compromising their usability [3, 5]. These
limitations have impeded the adoption of SDRs in the re-
search of state-of-art wireless systems.

∗This paper is supported by National Natural Science Foun-
dation of China (61370056, 61103028)

In order to overcome these limitations, we propose a re-
configurable SDR platform, named GRT. GRT can satisfy
the performance requirement of wireless data processing by
leveraging high performance of its underlying hardware. At
the same time, its reconfigurable architecture design pro-
vides good programmability with corresponding software sup-
port. For any module design in SDR, GRT provides flexible
switching between its hardware version and software version
implementations. Thus, it enables module-level incremental
refinement from legacy or newly designed software imple-
mentations (for fast development time) to their hardware
counterparts (for high performance). In addition, a wireless
system implementation on GRT can be directly used as a
conventional wireless network adaptor without any changes
of APIs at the application level. And the rich legacy codes of
GNU Radio can be smoothly reused on GRT. Contributions
of this paper are summarized as follows:

• We provide a comparison of existing SDR platforms and
argue that the requirements of both performance and us-
ability should be meet, which motivates our reconfigurable
SDR platform named GRT.

• We present the architecture and corresponding software
support of GRT and introduce how the design challenges
are solved.

• We implement an 802.11a/g WiFi system in GRT to eval-
uate its performance. The evaluation demonstrates that
the performance requirement is satisfied with a substantial
improvement in usability.

The rest of this paper is organized as follows. In Section
2, we present a brief introduction to SDR and existing SDR
platforms. Their advantages and limitations are discussed
to motivate our proposal of GRT in Section 3. The architec-
ture of GRT and software support of the framework are in-
troduced in Section 4. In Section 5, we present an 802.11a/g
WiFi implementation on GRT, followed by a conclusion in
Section 6.

2. PRELIMINARIES

2.1 Background of SDR
SDR was first proposed as a programmable radio commu-

nication system, in which some components conventionally
implemented in hardware are replaced by means of software.
Recently, various alternative hardware, which include SIMD
processors and FPGA, are proposed for high-performance
SDR designs [8, 5, 7]. Generally speaking, an ideal SDR

ACM SIGARCH Computer Architecture News 51 Vol. 42, No. 4, September 2014

De-‐scrambler Viterbi De-‐
interleaver

De-‐
constella1on

FFT

Data	 ouput

Remove	 Guard	
Interval

CFO	
Synchroniza1on

Channel	
Es1ma1on	

Rate/Length	 decoder

RF	 Front-‐end

Figure 1: Illustration of the 802.11a/g PHY receiver

platform should satisfy the following goals.

• High Performance. In order to follow the state-of-art
standard of wireless systems, both throughput and latency
should be promised in an SDR design.

• Efficient Modular Design. It should support flexible
creation/deletion/extension of any individual component
with moderate design overhead.

• Commodity Interface. It should provide a convenient
interface for upper network layers. For example, a wireless
system designed on the platform could be directly used as
a conventional wireless network adapter.

• Good Programmability. To reduce the learning curve,
an SDR platform should be easy-to-program. Especially
for SDR platforms that are developed for researchers in
the wireless community, extraordinary programming skills
are ungrateful.

• Code Reusability. To leverage the rich legacy codes from
existing platforms (e.g., GNU Radio), it should provide
sufficient compatibility.

Unfortunately, it is nontrivial to achieve these design goals
due to some intrinsic obstacles of a wireless system. We
take the PHY-layer receiver end of 802.11a/g as an exam-
ple to explain the reasons. The structure of the receiver is
illustrate in Figure 1. Among these modules, some (e.g.,
Viterbi) are dominated by bit-level sequential computation
and can achieve a high clock frequency in hardware; while
others (e.g., Channel-Estimation) contain massive parallel
processing kernels to get high throughput with low achiev-
able clock frequency. They should not work at the same
clock frequency. Otherwise, the throughputs of the bit-level
modules will be severely limited by the low clock frequencies
of the massive parallel modules. Thus, multi-clock domains
are needed in the design.

At the same time, for hardware module implementation,
without a specially designed modular interconnect frame-
work, a redesign of the whole system may be needed even
for a minor revision to a single module, which is quite time-
consuming and error-prone. Moreover, in a mixed software-
hardware SDR design, the communication among these mod-
ules becomes a critical issue, especially when the SDR sys-
tem is expected to work as a conventional wireless adapter.
In addition, the legacy codes from GNU Radio are normally
incompatible to those platforms based on the specific under-
lying hardware.

In summary, numerous design issues should be considered
in the development of an SDR platform.

2.2 Existing SDR Platforms
GNU Radio [1] is the most widely used SDR platform. It

is a pure software-based open-source platform. A computer
running GNU Radio can be connected to an external ra-
dio frequency (RF) front-end device (e.g., USRP series [6]).

There are rich legacy codes in GNU Radio. However, GNU
Radio provides low throughput, mainly due to the slow dig-
ital processing speed of the general-purpose processors. It
only supports data rates at the level of several Mbps, which
is far behind the data rate requirement of real-world wireless
standards nowadays.

Sora [3] is a software-dominant SDR platform on high-end
multi-core machines running the Windows OS, with a spe-
cial hardware aid in timing-intensive components. It maps
modules of a PHY layer to various processor cores to achieve
considerable performance. Sora satisfies the 54 Mbps data
rate requirement of 802.11a/g. A recent two-pipeline 2x2
MIMO version of Sora [4] claimed to support a 117 Mbps
data rate. However, due to the intrinsic process scheduling
properties of Windows, Sora cannot fully guarantee the tight
timing/real-time requirements of the MAC layer in WiFi
standards. In addition, SDR development on Sora requires
partitioning, mapping, and balancing of sub-tasks. Thus,
special programming skills are needed.

SIMD processors have also been employed for SDR design
to leverage the advantage of high-throughput processing [8].
Though SIMD processor-based platforms provide high pro-
grammability, the massive data parallel computing model is
not suitable for all the wireless PHY modules. GPU-based
platforms are too power-hungry for SDR systems.

WARP [5] is an FPGA-based SDR platform. A WARP
platform can communicate with a host computer through
Ethernet connections. The latest version of WARP equips a
relatively powerful FPGA for signal processing. It can pro-
vide a higher processing capacity than software-based SDR
platforms. The MIT AirBlue [7] is also an FPGA-based SDR
platform. AirBlue observed the importance of modularity in
programming wireless protocols. It provides two features,
latency-insensitivity and data-driven control. Programming
languages of WARP and AirBlue are HDL and Bluespec [9],
respectively. They do not provide an efficient modularity
design framework or specific support for programmability.
And although the modules programmed in AirBlue can be
interconnected with latency-insensitive FIFOs, all of them
should be in the same clock domain, which may degrade the
performance of the SDR system.

3. MOTIVATION
Software-based SDR platforms (including software on general-

purpose, SIMD processors or GPU), though flexible, have
intrinsic limitations to achieving the required throughput
of high-speed wireless standards for two reasons. First, in
wireless communication, both bit-level operations and mas-
sive parallel operations are critical in the signal processing
stages, which are not suitable for these platforms. Thus
it is difficult to achieve the state-of-art data rate require-
ment. Second, due to the scheduling algorithms/properties
of the general-purpose OS, such as the units time intervals
(1-10ms), interrupts, preemptive scheduling, etc., normal
software-based SDR platforms cannot satisfy the strong tim-
ing requirement (1us precision). A specifically designed OS
may help to satisfy the timing requirement, but the efforts
of both building such an OS and implementing an SDR plat-
form on top of it are less desirable.

An FPGA-aided SDR platform is able to meet the perfor-
mance/timing requirement. FPGA is very suitable for both
massive parallel computing and bit-level operations. Mod-
ern FPGAs can be clocked to several hundreds of MHz, so

ACM SIGARCH Computer Architecture News 52 Vol. 42, No. 4, September 2014

a precise timing control is possible. However, the issue of
programmability in FPGA should be considered. Though
programming individual hardware modules is not very diffi-
cult for an experienced developer, the complexity increases
significantly for integrating them into a high performance
pipeline. Besides, in terms of usability, it is not easy to
use the rich legacy software codes that the SDR community
already has.

In order to meet the requirements of both performance
and usability, we propose a reconfigurable SDR platform,
GRT. It can satisfy the performance requirement of wire-
less data processing by leveraging high performance of its
underlying hardware. At the same time, its reconfigurable
architecture design provides good usability with correspond-
ing software support.

4. DESIGN OF GRT

4.1 Design Challenges

4.1.1 Multiple Clock Domain
As mentioned in Subsection 2.1, multi-clock domains are

needed for different hardware-based SDR modules to sat-
isfy both throughput and latency requirements. Although
it is possible to design a dedicated clock domain for each
module, the overhead of asynchronous logic for communica-
tion among these clock domains is nontrivial. In addition,
the implementation process is time-consuming and error-
prone. Thus, the first challenge is how to provide an efficient
method for designs with multiple clock domains in the SDR
platform.

4.1.2 Modularity Related Issues
In an SDR platform, a convenient method should be pro-

vided to insert a new module, modify an existing module,
and remove an obsolete module in the pipeline. In addition,
switching between a hardware version and software version
implementation of these modules is required to enable in-
cremental refinement from convenient software implementa-
tions to their hardware counterparts.

However, it is not straightforward because various mod-
ules may have different input and output port requirements
with different data widths, especially when communication
between software and hardware modules is considered. It
means that inserting/removing/replacing modules may re-
sult in the redesign of interconnects between modules, which
is time-consuming and error-prone. These issues pose a de-
sign challenge in our proposed SDR platform, i.e., that of
providing a support for the full modularity and interconnec-
tivity of the software and hardware modules.

4.1.3 OS User/Kernel Cross-mode Communication
An SDR platform with high usability should provide a

convenient network interface for the upper layers of the OS
network stack so that a wireless system designed on the plat-
form could be directly used as a conventional wireless net-
work adaptor. According to the network stack structure in
modern operating systems (e.g., Linux), and considering the
efficient method of invoking hardware modules, the network
interface provided by an SDR platform should be in the OS
kernel mode. Some software modules in the SDR platform
may also be in the OS kernel mode, such as the rate adapta-
tion module at the high-MAC layer. Another example is the

software end of the PCIe communication library, which is re-
sponsible for the communication between the host computer
and the external SDR platform.

In addition, the requirement for code reusability/compat-
ibility to the GNU Radio makes this problem even worse.
Although a code-wrapper can be used to make the codes in
hardware design compatible to those in GNU Radio at an
certain level, a large gap exists because they reside in the
OS kernel and user modes, separately. The communication
between the modules in these two modes, as well as that be-
tween the modules and the OS network layer, is challenging.

4.2 GRT Architecture
In order to overcome the challenges discussed in Subsec-

tion 4.1, we propose an efficient reconfigurable SDR platform
called GRT. Figure 2 illustrates its architecture.

4.2.1 Overview of GRT
As shown in Figure 2, the GRT system is composed of

two main components: the software extension on the host
and the reconfigurable logic (RL) hardware. The RL part
consists of a global partition and several local partitions.
The software part includes both OS user-level and kernel-
level extensions.

An SDR researcher can develop his own software mod-
ules in either OS user level or kernel level and hardware
modules on RL. In addition, GRT provides a tool called
ModuleGen to automatically generate the corresponding in-
terconnect and bypass logic for the hardware modules on
RL according to a configuration file. It facilitates the pro-
cess of inserting/modifying/removing hardware modules in
the pipeline. It means that SDR researchers only need to
focus on the development of their own modules instead of
worrying about the interconnect among the modules. Note
that in GRT the modules can be programmed with HDL
manually or generated from high-level source code (e.g., C
codes) by high-level synthesis tools [12, 13].

4.2.2 Partition-based Architecture
Although different SDR modules may need different max-

imum clock frequencies, the total number of clock domains
in the SDR platform should be controlled under a moder-
ate level to reduce the complexity of synchronization across
clock domains. Since the throughput of the whole pipeline
is limited by the module with the lowest throughput, some
modules do not have to work with their maximum work-
ing frequencies. Thus, one goal of partitioning is to select
proper working frequencies for the modules.

For example, in our case study in Section 5, the scram-
bler module can be run under the frequency of 185 MHz
with a throughput of 11840 Mbps; the BCC module can
achieve 10800 Mbps under a frequency of 450Mhz. How-
ever, for chn esti module, its maximum frequency is 35MHz
with a maximum throughput of 291Mbps. Thus, it is fea-
sible to group these modules together into the same clock
domain with a 35MHz working frequency. All these mod-
ules in this clock domain can still achieve a throughput more
than 125Mbps, which is the throughput of the whole pipeline
limited by the module of V iterbi.

This grouping method can greatly reduce the number of
required clock frequencies in an SDR system. At the same
time, the cross-clock-domain components, such as asynchronous
logic, which are several times more expensive than syn-

ACM SIGARCH Computer Architecture News 53 Vol. 42, No. 4, September 2014

oo

U
SR

 L
EV

EL
 S

W

M
o

d
u

le
 N

U
SR

 R
L

M

o
d

u
le

 1

IP
 C

O
R

E
R

L
M

o
d

u
le

 2

C
2

R
T

L
R

L
M

o
d

u
le

 3

K
e

rn
e

l L
e

ve
l S

W

M
o

d
u

le
 4

U
SR

 L
EV

EL
 S

W

M
o

d
u

le
 5

Logical pipeline

……

HOST

PCIe

OS boundary
kernel/user

Kernel
level
SW

module

Kernel
level
SW

module

Kernel
level
SW

module

Kernel
level
SW

module

Linux
Network

layer
(Network
layer/IP)

Linux
Network

layer
(Network
layer/IP)Router

……

user
level
SW

module

user
level
SW

module

……

Character
device interface

Reconfigurable Logic(RL)

Global Partition

Shadow register
manager

PCIe HW module
CSR_0 ~ CSR_n

IR_0 ~ IR_n

Local Partition 1

Shadow CSRs

Shadow IRs

M
U

X

RL Module 1

Local Partition 2

Shadow CSRs

Shadow IRs

……

PCIe
SW

module

FPGA

module

FPGA
RF

front-
end

module

user
level RF

front-end
module

GRT system architecture

M
U

X

RL Module 3

M
U

X

RL Module 2

M
U

X

RL Module 5

1

2

3

Figure 2: Illustration of the GRT architecture

chronous logic both in terms of latency and area, are no
longer necessary for interconnecting the modules in the same
partition (clock domain).

In GRT, the whole architecture is divided into a config-
urable number of partitions, each of which may have its
unique clock frequency, as shown in Figure 2. The global
partition is used to store the system-wide registers and con-
tain the system modules/interfaces to the modules outside
the RL part. Various numbers of local partitions with differ-
ent clock domains can be created automatically or manually
by the developers, with the help of ModuleGen.

4.2.3 Shadow Register
In addition to streaming data interfaces such as asyn-

chronous FIFOs, communication among modules from dif-
ferent clock domains can also be realized by accessing an
intermediate register. For example, a function module in
a local partition would access a control and state register
(CSR) in the global partition, which is set by the software
side, to get some control instructions. Due to random access
patterns of these registers, asynchronous FIFOs for stream-
ing data transmission should not be employed. A proper
method for cross-partition register access is needed.

We propose shadow registers and shadow register man-
agers to facilitate the cross-partition register access. In
GRT, the global partition contains all registers that are used
for communication among different partitions. These regis-
ters are named global registers. After the communication
among partitions is specified by the SDR developer, dedi-
cated shadow registers are created in each partition. The
shadow registers in a partition are logically mapped to a
subset of global registers. Then, a shadow register manager,
which is also created by the GRT system for that parti-
tion, is responsible for mapping the global registers into the
shadow registers and guaranteeing the correctness during
the cross-clock-domain data transmission process.

To this end, all modules in a partition can conveniently
access the global registers by managing the corresponding
local shadow registers. Since the modules and their local
shadow registers are in the same clock domain, there is no
extra effort needed for cross-clock-domain signal transmis-

sions in a module design. And two modules from different
partitions can communicate through the global registers by
accessing their own shadow registers.

4.2.4 Interconnect and Bypass Logic
In GRT, we provide the automatic generation of inter-

connect and bypass logic, with the help of a configuration
file (details in Subsection 4.3). A revision to the logic of a
module does not require modification to the I/O interface.

When a new module is inserted, the GRT system auto-
matically generates the interconnect logic for the modules
according to the configuration file. When an obsolete mod-
ule is to be removed, the developer can change the descrip-
tions of the FIFO ports of its neighbor modules in the con-
figuration file. Then, the GRT system will generate a new
set of interconnect logic for those modules, which will be
connected without the obsolete module.

A module may also need to be temporarily disabled with-
out modifying and recompiling the pipeline. This scenario
happens in the debugging process or when some selected
modules are interconnected with some software modules to
form a pipeline mixed with software and hardware modules.
The GRT system can automatically generate the bypass
logic for a module that needs to be temporarily disabled.
The developer can simply indicate in the configuration file
that a module may be temporarily disabled. Then, the GRT
system will generate the bypass logic for that module during
compiling. The bypass logic is controlled by a CSR and is
activated when the software part of the GRT system sets
the CSR (via the PCIe library).

4.2.5 Host-RL PCIe Library
In order to support an efficient mix software-hardware

design, we provide a user-friendly streaming host-RL PCIe
communication library in GRT [16]. This library supports
low-latency CSR accesses and multiple streaming data chan-
nels between software modules and hardware modules. With
such a library, the data can be directly transmitted between
a software module and a hardware module in the stream-
ing mode. The host-RL PCIe library was highly optimized
and verified on various generations of Xilinx FPGAs, and
archived a throughput of several tens of Gbps. We believe
this library can fully support the aggressive data exchange
requirement on SDR applications.

4.2.6 OS Kernel Module for Cross-mode Communi-
cation

To achieve efficient OS user/kernel cross-mode commu-
nication, we provide a new Linux OS kernel module, illus-
trated as the “router” in Figure 2, which supports a three-
way communication. One direction is to the modules in the
OS kernel mode. Those modules could be software mod-
ules in the OS kernel mode or the software part of the PCIe
library for communicating to the hardware modules. The
second direction is to the network layer (e.g., the IP layer)
of the OS network stack, which is in the OS kernel mode, to
exchange data between the GRT modules and the network
layer .

The third direction is to an interface, which is provided
by the router, accessible at the OS user mode. This inter-
face is used to provide a data access channel for the software
modules in the user mode. The router creates a pseudo char-
acter device as the interface. A software module in the user

ACM SIGARCH Computer Architecture News 54 Vol. 42, No. 4, September 2014

mode can use read/write system calls to access the charac-
ter device. Then, the data are actually transmitted across
the OS mode boundary to the router. With the help of this
OS kernel module, software modules in the user mode (1© in
Figure 2), software modules and the PCIe library in the ker-
nel mode(3© in Figure 2), and the OS network layer in the
kernel mode (2© in Figure 2) can exchange data efficiently.

4.3 Software Support
In order to provide a good usability, GRT provides a tool

named ModuleGen to facilitate the reconfiguration of the
architecture. The input of this tool is a configuration file.
In the configuration file, a developer can specify the number
of partitions, the names of the partitions, the set of required
CSRs in each partition, and some other information for gen-
erating the Verilog codes of the partitions. The developer
can also specify which partition a module should be allo-
cated to, the CSRs that the module should access, the input
and output ports of the module. To generate the intercon-
nect logic for a module, the configuration file also includes
the neighbor modules that a module should be connected to.
ModuleGen also generates the bypass logic for each module,
which is activated when the module should be temporarily
disabled.

To support an efficient modular design, we offer a C++/HDL
co-design framework in GRT, with the help of the GRT host-
RL PCIe library and a C++ wrapper for the RL modules.
When a user designs his own pipeline, the modules in the
pipeline can be a mixture of C++ codes for software modules
and the HDL codes for hardware modules. A user can start
her design by programming a module in C++, and then
replace the software module with a hardware version. A
hardware module can be manually programmed with HDL,
or generated from C-to-HDL synthesis tools such as xPi-
lot [12] or Xilinx AutoESL/Vivado HLS [13], following the
same interface specification in GRT. In addition, we make
the C++ wrapper have the same interface as that in GNU
Radio for GNU Radio C++ building blocks; thus the rich
legacy codes in GNU Radio can be reused.

5. 802.11A/G IMPLEMENTATION ON GRT
We implemented an 802.11a/g WiFi system to evaluate

the efficiency of GRT. The reconfigurable architecture is im-
plemented on an FPGA evaluation board Xilinx ML605 with
a Xilinx Virtex-6 LX240T FPGA chip [10]. The board is
connected to a host computer using the GRT PCIe library.

5.1 System Implementation
In order to evaluate the usability of the GRT system in

a practical scenario, we implemented an 802.11a/g PHY
and low-MAC system following the specification of maxi-
mum data rate (54Mbps). Note that this is not the peak
performance that can be achieved by GRT. The maximum
throughput of each module is discussed in Subsection 5.2.

To make the case generic and convenient for SDR devel-
opers, we chose to attach a radio frequency (RF) front-end
device USRP N210 [6] to the Gigabit Ethernet port of the
host computer using its official UHD driver.

In order to make the GRT system behave like a conven-
tional wireless network adapter, we generate a network in-
terface (grt0) for the GRT system in the OS and set an IP to
the interface. Then, two computers with GRT systems can
communicate through the air via their IPs of the GRT inter-

Table 1: Comparison of the programmability
Case GRT raw GRT arch

+ Module 4 days 0.5 day
Pipeline 1 month 5 days

Table 2: Performance comparison on PHY modules

Major
Modules

GRT raw GRT arch
Fmax M.Th. Slices Fpar P.Th. Slices
MHz Mbps % MHz Mbps %

Viterbi 125 125 6.56 125 125 6.59
CFO sync 85 230 1.38

85
230 1.38

FFT [17] 300 1016 9.58 287 9.60
iFFT [17] 300 1016 10.87 287 10.88
scrambler 185 11840 0.81

35

933 0.81
descrambler 210 13440 1.81 933 1.81
CRC add 333 2664 0.47 280 0.47

CRC check 303 2424 0.50 280 0.50
BCC 450 10800 0.07 840 0.07

interleav 400 7200 0.74 630 0.75
deinterleav 348 6264 0.75 630 0.77
constella 333 2997 0.30 315 0.30

deconstella 333 2997 0.88 315 0.90
chn esti 35 291 3.42 291 3.42

whole impl N/A 125 60.16 N/A 125 60.64

faces using a normal Linux wireless networking method. We
successfully verified the correctness of the GRT system by
using ping command, ssh, and TCP file transmission (socket
programming).

We evaluate the programmability with the development
period in two scenarios: 1) inserting a pre-written hardware
module into the pipeline; 2) connecting all existing modules
into a functional PHY pipeline. The comparison is based on
implementations on two platforms. The first one is based
on the GRT architecture (labeled as “GRT arch”) and the
second one is a direct implementation on the same GRT
hardware platform (labeled as “GRT raw”). Both imple-
mentations are done by the same developer to ensure the
same developing experience. Table 1 shows the results. We
can see that the programmability is greatly improved with
the GRT architecture.

5.2 Performance Evaluation of GRT
In this subsection, we compare the performances of the

two implementations in GRT raw and GRT arch. Table 2
shows the clock frequencies, throughputs and FPGA slice
occupations of the major PHY and low-MAC modules in
these two implementations. We also show the data for the
whole implementation (including the PCIe module and some
other related modules).

From Table 2, we can see that the automatically generated
interconnect logic and bypass logic have negligible impact on
the resource occupations of the modules. And the total re-
source occupations by the interconnect logic, bypass logic,
shadow register managers etc., which are introduced by the
GRT architecture, are also negligible in the whole imple-
mentations (60.64% in GRT arch vs. 60.16% in GRT raw).
The reason is twofold: 1) Even in GRT raw, interconnect
logic is also needed among modules; 2) In GRT arch, within
each partition, the relating modules are connected with syn-

ACM SIGARCH Computer Architecture News 55 Vol. 42, No. 4, September 2014

Table 3: Latencies of PHY TX and RX sub-pipelines
Sub-pipeline GRT raw GRT arch

Transmitter (TX) 1.78 us 1.79 us
Receiver (RX) 30.98 us 31.84 us

chronous logic. The resource occupation of synchronous
logic is much lower than that of corresponding asynchronous
logic used by the modules with different clock frequencies.

The throughput of SDR on GRT arch is also the same
as that on GRT raw. It is because the throughput of a
pipeline is limited by the bottleneck module in the pipeline.
The bottleneck modules on both GRT arch and GRT raw
are the same. The automatically generated logic in GRT in-
duces extra latency. Table 3 shows the latency comparison
between GRT arch and GRT raw. We can find that the la-
tency overhead is also negligible because of the replacement
of asynchronous FIFOs with synchronous logic for the mod-
ules in the same partition. The benefits of the synchronous
logic offset the latency overhead of the bypass logic.

We also find that the module Viterbi becomes the bottle-
neck in both implementations. This is limited by our cur-
rent simple implementation of Viterbi. Note that a higher
performance can be achieved by other implementations: for
example, [11] shows a Viterbi implementation with a much
higher performance. The reason that we did not include that
implementation into our evaluation set is due to IP issues.

Pure software-based SDR platforms can not support the
full PHY throughput of 802.11a/g (54 Mbps). Other kinds
of SDR platforms, such as Warp and Sora, are able to sup-
port such throughput, as is GRT. However, as discussed,
GRT provides a much higher performance potential (in terms
of both throughput and latency) than Sora. And the cur-
rent GRT implementation employs the same FPGA model
as that of WARP, so GRT can provide the same level of
performance of WARP, while GRT provides more usabili-
ty/programmability at the same time.

6. CONCLUSION
To design an efficient SDR system, we propose a novel

reconfigurable platform named GRT. The architecture and
software support of GRT are carefully explored to handle the
design challenges, which include multi-clock domain, modu-
larity design, interconnect logic, cross-layer communication,
etc. The experimental results show that GRT can provide
both good usability and high performance.

7. REFERENCES
[1] GNU Radio, http://www.gnuradio.org/

[2] T. Schmid, O. Sekkat, M.B. Srivastava, ”An
Experimental Study of Network Performance Impact
with Increased Latency in Software Defined Radios”, in
WiNETCH 2007

[3] K. Tan, J. Zhang, J. Fang, H. Liu, Y. Ye, S. Wang, Y.
Zhang, H. Wu, W. Wang, and G. Voelker, ”Sora: High
Performance Software Radio using General Purpose
Multi-core Processors”, in NSDI 2009

[4] J. FANG, Z. TAN, and K. TAN, Soft MIMO: A
Software Radio Implementation of 802.11n Based on
Sora Platform, in ICWMMN 2011

[5] WARP v3 Kit,
http://mangocomm.com/products/kits/warp-v3-kit

[6] USRP Family of Products,
https://www.ettus.com/product

[7] M.C. Ng, K.E. Fleming, M. Vutukuru, S. Gross,
Arvind, and H. Balakrishnan, Airblue: A System for
Cross-Layer Wireless Protocol Development, in ANCS
2010

[8] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T.
Mudge, C. Chakrabarti, and K. Flautner, SODA: A
Low-power Architecture For Software Radio, in ISCA
2006

[9] R. Nikhil, Bluespec System Verilog: Efficient, Correct
RTL from High Level Specifications, in MEMOCODE
2004

[10] Xilinx Virtex-6 FPGA ML605 Evaluation Kit,
http://www.xilinx.com/products/boards-and-kits/EK-
V6-ML605-G.htm

[11] Xilinx LogiCORE IP Viterbi Decoder v8.0 Product
Guide,
http://www.xilinx.com/support/documentation/ip
documentation/viterbi/v8 0/pg027 viterbi decoder.pdf

[12] D. Chen, J. Cong, Y. Fan, G. Han, W. Jiang, and Z.
Zhang, ”xPilot: A Platform-Based Behavioral
Synthesis System” in SRC TechCon 2005.

[13] Xilinx High-Level Synthesis (HLS),
http://www.xilinx.com/tools/autoesl instructions.htm

[14] S.T. Aditya, and S. Katti, ”FlexCast: Graceful
Wireless Video Streaming,” in MobiCom 2011

[15] S. Katti, S. Gollakota, and D. Katabi, ”Embracing
Wireless Interference: Analog Network Coding,” in
SIGCOMM 2007

[16] J. Gong, J. Chen, H. Wu, F. Ye, S. Lu, J. Cong, and
T. Wang, ”EPEE: An Efficient PCIe Communication
Library with Easy-host-integration Property for FPGA
Accelerators,” in FPGA 2014

[17] Pipelined FFT/IFFT 64 points processor,
http://opencores.org/project,pipelined fft 64

[18] X. Wang, W. Huang, S. Wang, J. Zhang, C. Hu,
”Delay and Capacity Tradeoff Analysis for
MotionCast,” IEEE/ACM Transactions on Networking,
Vol. 19, no. 5, Oct 2011.

[19] W. Huang, Xinbing Wang, ”Capacity Scaling of
General Cognitive Networks,” IEEE/ACM
Transactions on Networking, vol 20, no. 5, 2012.

[20] C. Xu, L. Song, Z. Han, Q. Zhao, X. Wang, and B.
Jiao, Efficient Resource Allocation for Device-to-Device
Underlaying Networks using Combinatorial Auction,
IEEE Journal on Selected Areas in Communications,
special issue on Peer-to-Peer Networks, vol. 31, no. 9,
2013.

[21] T. Wang, L. Song, Z. Han, and B. Jiao, Dynamic
Popular Content Distribution in Vehicular Networks
using Coalition Formation Games, IEEE Journal on
Selected Areas in Communications, special issue on
Emerging Technologies, vol. 30, no. 9, 2013.

[22] C. Xu, L. Song, and Z. Han, Resource Management
for Device-to-Device Underlay Communication,
Springer Briefs in Computer Science, 2014.

[23] K.Chi, X. Jiang and S. Horiguchi, Joint Design of
Network Coding and Transmission Rate Selection for
Multihop Wireless Networks, IEEE Transactions on
Vehicular Technology,Vol.59, No.5, 2010.

ACM SIGARCH Computer Architecture News 56 Vol. 42, No. 4, September 2014

