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ABSTRACT
The domain-specific language (DSL) for image processing, Halide,
has generated a lot of interest because of its capability of decou-
pling algorithms from schedules that allow programmers to search
for optimized mappings targeting CPU and GPU. Unfortunately,
while the Halide community has been growing rapidly, there is cur-
rently no way to easily map the vast number of Halide programs
to efficient FPGA accelerators. To tackle this challenge, we propose
HeteroHalide, an end-to-end system for compiling Halide programs
to FPGA accelerators. This system makes use of both algorithm and
scheduling information specified in a Halide program. Compared
to the existing approaches, flow provided by HeteroHalide is sig-
nificantly simplified, as it only requires moderate modifications for
Halide programs on the scheduling part to be applicable to FPGAs.
For part of the compilation flow, and to act as the intermediate
representation (IR) of HeteroHalide, we choose HeteroCL, a het-
erogeneous programming infrastructure which supports multiple
implementation backends (such as systolic arrays and stencil im-
plementations). By using HeteroCL, HeteroHalide can generate
efficient accelerators by choosing different backends according to
the application. The performance evaluation compares the accel-
erator generated by HeteroHalide with multi-core CPU and an
existing Halide-HLS compiler. As a result, HeteroHalide achieves
4.15× speedup on average over 28 CPU cores, and 2 ~ 4× throughput
improvement compared with the existing Halide-HLS compiler.
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1 INTRODUCTION
Image processing plays a significant role in lots of applications
today, including medical imaging [8], autonomous driving [10],
augmented reality [18], computational photography [12], etc. How-
ever, due to possibly large number of different processing stages
and the structured data dependency among them, implementing
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image processing pipelines efficiently is not an easy job. It is diffi-
cult and time-consuming for a designer to write image processing
algorithms while parallelizing and optimizing for data locality and
performance. Halide [15], a widely-used image processing domain-
specific language (DSL), partially solves this problem by decoupling
the algorithm and scheduling to allow programmers to search for
optimized mappings of the resulting pipelines to various parallel
architectures and complex memory hierarchies.

Computation and energy consumption are often the bottlenecks
of image processing tasks due to great amounts of pixels and com-
plex algorithms. For example, it requires 120 gigaops/sec to process
1080p/60fps raw video [9]. Considering there is a lot of data locality
in image processing applications, appropriate customized hardware
designs could result in enormous computation and energy saving,
which is not available to CPU and GPU due to their fixed archi-
tecture. Therefore, field programmable gate arrays (FPGAs) are a
great acceleration platform to provide a configurable computation
fabric to match a different data flow and computation pattern for
different applications [2, 9, 14, 16].

While the Halide community has been growing rapidly in recent
years (received over 3,000 stars on GitHub [7]), there is no way to
easily migrate the vast number of Halide programs to FPGA accel-
erators. The direct and traditional way to design FPGA accelerators
is to rewrite programs to register-transfer level (RTL) code. This
is very time-consuming. Although C-based high-level synthesis
(HLS) raises the design abstraction level to untimed specification
by automated scheduling, pipelines, and resource sharing [5], it
still requires expertise on the microarchitecture to get efficient de-
signs that result in a high threshold for software programmers. The
complicated rules of using scheduling primitives for HLS bring
programmers a greater workload as well.

Another approach is to rewrite Halide programs to hardware-
oriented DSLs, such as Darkroom [9], HIPAcc [16], PolyMage [3],
SODA [2], HeteroCL [11], etc. But it still takes time to learn these
DSLs, not to mention other limitations that exist in these DSLs. For
example, Darkroom supports only 1 pixel/cycle pipelines, which
may not be acceptable for many image applications. SODA can
achieve great performance, and implement lots of optimizations for
stencil programs, but it does not support non-stencil programs, such
as convolution and matrix multiplication. HeteroCL is a promising
heterogeneous programming language inspired by Halide, but it
takes time for Halide programmers to learn. Some conventions
and behaviors of HeteroCL and Halide are not the same. This may
cause confusion to programmers who try to manually migrate from
Halide to HeteroCL.

The only prior work from Halide to FPGA is Halide-HLS [14].
Halide-HLS is a Halide-to-FPGA compiler and allows programmers
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to design FPGA accelerators without many modifications. It pro-
vides a simple way for Halide programmers to implement their
programs on a Xilinx Zynq FPGA. However, due to the lack of ac-
tive maintenance, the HLS code it generates is no longer supported
by the latest FPGA vendor tools, which means no one can actually
make use of it now. Even if someone is willing to make it up-to-date,
a significant amount of engineering effort would be required be-
cause their code generator and the generated architecture is tightly
and directly coupled with the backend HLS tool. Nevertheless, this
work is an important motivating factor of this study.

In this paper, we propose HeteroHalide, an end-to-end system
for compiling Halide programs to FPGA accelerators, making use
of both algorithm and scheduling information specified in a Halide
program. HeteroHalide not only significantly simplifies the mi-
gration effort, but also enables efficient accelerator designs via its
flexible backend choices. More concretely, this paper makes the
following contributions:

• HeteroHalide provides an easy-to-use flow from Halide to FPGA.
It only requires moderate modifications for Halide programs on
the scheduling part, instead of algorithm. Compared to other ex-
isting approaches, including rewriting in HLS / RTL, this solution
of migrating Halide greatly reduces the migration effort.

• HeteroHalide generated FPGA accelerators outperform both CPU
with 28 cores and the Halide-HLS FPGA compiler. Accelerators
generated by HeteroHalide achieve 4.15× speedup on average
over CPU, and has 2 ~ 4× peak performance as Halide-HLS, when
tested on the same Zynq-7020 board.

• We develop a Halide-to-HeteroCL code generator, which can au-
tomatically generate HeteroCL [11] code, with both algorithms
and schedules. We choose HeteroCL as the intermediate repre-
sentation (IR) in HeteroHalide, because of its great hardware
customization capability, using the idea of separating algorithms
and schedules. HeteroCL supports multiple heterogeneous back-
ends (spatial architectures), including a stencil backend [2], a
systolic array backend [6], and the general Merlin compiler back-
end [4, 17]. Therefore, it is able to generate efficient hardware
code according to the type of the applications.

• When Halide is compiled, the scheduling is applied directly at
IR level using immediate transformation. We make extensions on
Halide schedules, allowing some schedules to be lowered with
annotations, using lazy transformation. By adding this extension
to Halide, HeteroHalide can generate specific scheduling primi-
tives at the HeteroCL backend level, thus emitting more efficient
accelerators.

The remainder of this paper is organized as follows. In Section 2,
we introduce theHalide DSL and its intermediate representation (IR)
system. Section 3 describes our extensions to the Halide language,
which allows the scheduling primitives to be mapped to FPGA.
We report our evaluation in Section 4 and compare with related
work in Section 5. Section 6 concludes this work and outlines future
research directions.

2 BACKGROUND
Many image processing applications have bottlenecks in their com-
putation and energy efficiency, due to the high pixel count and the

complex algorithm. Considering that there are plenty of data local-
ity and parallelism in these applications, exploiting these features
with optimized execution strategies is important for programmers
to write high-performance code. This, however, greatly increases
coding complexity and requires hardware knowledge from pro-
grammers. Domain-specific languages (DSL), e.g., Halide [15], are
developed to reduce the amount of detailed knowledge required
for application creation.

2.1 Halide
Halide [15] is an open-source DSL for fast and portable computation
on images and tensors. It is designed to help programmers write
high-performance image processing code easily on modern ma-
chines. One of the biggest advantages of Halide is that it decouples
the algorithm description of the program from the scheduling — its
execution strategy. When trying to optimize Halide code, program-
mers can simply modify the code of the scheduling part without
changing the algorithm part to change how the program is exe-
cuted. For equivalent C or C++ code, programmers have to change
the whole loop of their code. Halide scheduling primitives include
loop transformations like split, fuse, reorder, tile, etc., and
parallelization primitives like unroll, parallel, vectorize, etc.
This allows programmers to explore the design space and search for
the optimal schedule for their targeting machines. Halide currently
targets CPU and GPU, which are both software platforms without
hardware customization capability.

2.2 Halide IR System
The intermediate representation (IR) of Halide connects Halide
source code and the corresponding target code of CPU or GPU
architectures. Halide lowers the source code to the IR level first,
applies optimization passes, and then the target’s code generator
emits code for the resulting pipeline. Halide analyzes the syntax
and semantics of the Halide program and transforms them into an
abstract syntax tree (AST). Every node in the AST represents an
operation to the variables, such as Add and Store. In the process
of analyzing syntax, a node may point to other nodes. Therefore,
Halide builds the connections between operations and variables,
and constructs this AST. The AST is used as the IR in Halide.

2.3 HeteroCL
HeteroCL [11] is a Python-based domain-specific language (DSL).
Similar to Halide, HeteroCL separates the algorithms and the sched-
ules. One major difference between HeteroCL and Halide is that
HeteroCL supports a compilation flow targeting FPGA with mul-
tiple backends, including SODA [2], PolySA [6], and Merlin Com-
piler [4, 17]. Therefore, the customized schedule can be migrated
to the hardware design in subsequent HLS / RTL code generated.
HeteroCL categorizes the hardware customization into three types:
compute, data types, and memory architectures, which allows pro-
grammers to explore performance / area / accuracy trade-offs.

The heterogeneous backend supported by HeteroCL generates
HLS code, which then is synthesized to RTL code using vendor tools.
These backends target different types of programs and achieves
decent performance. SODA [2] targets stencil computation, which
performs local computation over a sliding window of the input



array(s). Stencil computation is widely-used in image processing
applications, e.g., the Gaussian blur filter and the Harris corner
detector [1]. PolySA [6] targets systolic arrays, an architecture
consisting of a group of identical processing elements (PE). This
architecture is applicable to a wide range of applications, including
convolution computation and matrix multiplication, etc. Apart from
the above, Merlin Compiler [4, 17] is a more general backend that
can generate optimized HLS code for both Intel and Xilinx platforms
and greatly enhance the generality of HeteroCL.

Therefore, we choose HeteroCL as the IR in our flow from Halide
to FPGA to fully utilize the heterogeneous feature of HeteroCL and
to enable easy extensions to the flow in the future. Connecting the
Halide-to-HeteroCL code generator with multiple backends, we
are able to generate efficient hardware code according to the type
of applications. If new and more efficient backends are developed
for HeteroCL, one only needs to change the schedule generated by
HeteroHalide to make use of them.

3 COMPILATION FLOW
HeteroHalide provides an automated flow from Halide to FPGA
accelerators. It consists of a Halide-to-HeteroCL code generator,
HeteroCL, and multiple backends of HeteroCL. More specifically,
HeteroCL generates corresponding hardware domain-specific lan-
guages (DSL) to these heterogeneous backends, and then those
backends generate hardware code from their hardware DSLs.

Both Halide [15] and HeteroCL [11] separate algorithms and
schedules in the code. However, there are still some semantic gaps
between them in the scheduling part while the algorithm part is
basically consistent during code generation. When Halide is com-
piled, the scheduling primitives are applied at the IR level and are
hard to recover, but HeteroCL often needs explicit scheduling infor-
mation to generate efficient accelerators. To tackle this challenge,
we propose two schedule lowering methods and extend Halide by
changing the scheduling primitives accordingly. The rest of this
section introduces the process of code generation for algorithms
and schedules, with examples, and our extensions on schedule
transformation.

3.1 Algorithm Transformation
This step is straightforward. We use the blur filter as an example
to show the compilation from Halide algorithm code to HeteroCL
algorithm code. The blur filter consists of two stages. Each stage
is described by a Halide function and represents a 3 × 1 (or 1 × 3)
filter, as shown in Listing 1.

1 Func blur_x("blur_x");
2 blur_x(x, y) = (input(x, y) + input(x+1, y) + input(x+2, y))/3;
3 Func blur_y("blur_y");
4 blur_y(x, y) = (blur_x(x, y) + blur_x(x, y+1) + blur_x(x, y+2))/3;

Listing 1: Halide algorithm.

The corresponding HeteroCL algorithm code is shown in List-
ing 2. The generated HeteroCL code uses a top function to describe
the overall algorithm. The sub-stage and the following for loop
correspond to each Func in Halide. Other than the syntax and con-
vention differences, we can see that Halide and HeteroCL share
very similar code structures for the algorithms. This makes the

1 def top(input_hcl):
2 with heterocl.Stage("blur_x"):
3 with heterocl.for_(y_min, y_max) as y:
4 with heterocl.for_(x_min, x_max) as x:
5 tensor_blur_x[x, y] = (input_hcl[x, y]
6 + input_hcl[x+1, y] + input_hcl[x+2, y]) / 3
7
8 with heterocl.Stage("blur_y"):
9 with heterocl.for_(y_min, y_max) as y:
10 with heterocl.for_(x_min, x_max) as x:
11 tensor_blur_y[x, y] = (tensor_blur_x[x, y]
12 + tensor_blur_x[x, y+1] + tensor_blur_x[x, y+2]) / 3
13
14 return tensor_blur_y

Listing 2: HeteroCL algorithm.

transformation relatively simple. We use HeteroCL’s imperative
programming APIs (heterocl.Stage, heterocl.for_) instead of
the compute API (heterocl.compute). In this way, we explicitly
represent the computing for loop in the HeteroCL source code
that is close to both Halide IR and HeteroCL IR. This improves the
scalability and stability of the Halide-to-HeteroCL code generator.

3.2 Schedule Transformation
Unlike the algorithm part, effort is needed for code generation
for the scheduling part. While Halide implements the schedules
directly at the IR level, HeteroCL needs explicit scheduling (cus-
tomization) information in order to generate efficient FPGA accel-
erators. Therefore, we propose two methods for schedule lowering:
immediate transformation (Section 3.2.1), and lazy transformation
(Section 3.2.2). These two different methods are further explained
with examples as follows.

3.2.1 Immediate Transformation. It summarizes that Halide sched-
ules are directly implemented at the IR level. As an example, we
apply the Halide unroll schedule to the blur filter shown in List-
ing 1 to demonstrate the process of immediate transformation.
Line 2 in Listing 1 represents a computation stage. Without any
customized schedule, its default loop nest is shown in Listing 3.

1 for y [min=...; extent=...; stride=1]:
2 for x [min=...; extent=...; stride=1]:
3 blur_x(y, x) = ...

Listing 3: Halide IR of the first loop nest in the blur filter
without schedules.

Then we apply the Halide schedule blur_x.unroll(x,4) to
unroll the x loop with a factor of 4. It is directly implemented into
the Halide IR, and the loop nest is transformed to Listing 4.

1 for y [min=...; extent=...; stride=1]:
2 for x [min=...; extent=...; stride=4]:
3 blur_x(y, x) = ...
4 blur_x(y, x + 1) = ...
5 blur_x(y, x + 2) = ...
6 blur_x(y, x + 3) = ...

Listing 4: Halide IR of the first loop nest in the blur
filter with blur_x.unroll(x,4) applied using immediate
transformation.

Via immediate transformation, the schedule is directly imple-
mented into the Halide IR, and the explicit scheduling information
is lost at the IR level in the process of lowering.



3.2.2 Lazy Transformation. In this case, Halide schedules are stored
explicitly at the IR level as an annotation. The scheduling annota-
tion is further transferred to the subsequent steps of the flow and
implemented by the backends. To have a clear comparison with
immediate transformation, we apply the same unrolling schedule
to the blur filter again, but this time we use lazy_unroll, which
is added as an extension to the existing Halide schedules. With
blur_x.lazy_unroll(x,4) applied, the corresponding loop nest
is shown in Listing 5.

1 for y [min=...; extent=...; stride=1]:
2 for x [min=...; extent=...; stride=1; unrolled; factor=4]:
3 blur_x(y, x) = ...

Listing 5: Halide IR of the first loop nest in the blur
filter with blur_x.lazy_unroll(x,4) applied using lazy
transformation.

In Line 2 of Listing 5, the unrolled annotation and the corre-
sponding unroll factor are stored in the For IR node corresponding
to the x loop. Thus, explicit scheduling information is maintained
at the IR level and can be implemented in subsequent steps of the
flow. This is necessary because the HeteroCL backends sometimes
need to apply their unique primitives to direct HLS schedules, using
the information in the annotations.

These unique scheduling primitives for HeteroCL backends are
essential for emitting efficient FPGA code. As HeteroCL supports all
those backends, the best way to support the scheduling transforma-
tion from Halide to heterogeneous hardware DSLs is to fully utilize
HeteroCL and to generate explicit scheduling code for HeteroCL.
We keep using the lazy_unroll schedule as an example and demon-
strate the subsequent compilation flow for this schedule.

1 schedule = heterocl.create_schedule([input_hcl], top)
2 stage_blur_x = top.blur_x
3 schedule[stage_blur_x].unroll(stage_blur_x.axis[1], 4)

Listing 6: HeteroCL scheduling code of the first loop nest in
the blur filter with blur_x.lazy_unroll(x,4) applied.

Listing 6 shows the corresponding HeteroCL schedule. First,
a HeteroCL API is called to create a default schedule based on
algorithm code of HeteroCL (Line 1). The function defining the
algorithm (top) and its input tensor(s) ([input_hcl]) are passed to
the heterocl.create_schedule API. Then, in Line 2, our target
stage is identified with the algorithm top and the stage’s name.
Line 3 applies the unroll scheduling primitive to stage_blur_x.
axis[1] corresponds to loop x, and the unroll factor is 4. The
HeteroCL scheduling code in Listing 6 is then transformed to dif-
ferent backend scheduling codes using different HeteroCL backend
code generators.

1 for (int y = ...; y < ...; y++)
2 #pragma ACCEL parallel factor=4 flatten
3 for (int x = ...; x < ...; x++)
4 blur_x[y][x] = ...

Listing 7: Merlin C code generated from the HeteroCL code.

Here, we show two HeteroCL backend schedules as examples.
Listing 7 shows the loop nest generated by the Merlin C back-
end and its scheduling primitives. Merlin C is an OpenMP-like

Table 1: Schedule primitives and the corresponding transfor-
mation methods supported by Halide vs HeteroHalide.

Primitive Description Halide HeteroHalide

reorder Switch the order of sub-loops in
the same nested loop.

Immediate Immediate

split Split a loop into a two-level
nested loop given the extent of
the inner loop.

Immediate Immediate

fuse Fuse a two-level nested loop
into a single-level loop.

Immediate Immediate

tile Split an iteration domain into
smaller tiles and iterate over
each tile separately.

Immediate Immediate

unroll Unroll a loop with given factor. Immediate Lazy

parallel Schedule a loop in parallel. Immediate Lazy

programming model used by the Merlin compiler [4] from Falcon
Computing Solutions [17]. Similar to the Halide IR loop nest with
lazy transformation in Listing 5, the explicit scheduling information
is stored as an annotation (Line 2 in Listing 7 and Line 2 in Listing 5).
Another example is the SODA [2] DSL, which can be synthesized
into efficient accelerators with scalable parallelism in addition to
fully pipelined communication reuse buffer with the least possible
buffer size. SODA’s unrolling primitive is relatively simple: unroll
factor: 4, because the SODAmicroarchitecture inherently unrolls
the inner loop of every stage with the same unroll factor.

3.3 Extensions on Halide Schedules
In this section, we summarize our extensions on Halide schedules
and the design methodology of schedule transformation for differ-
ent Halide schedules.

To obtain efficient FPGA accelerators, we need to generate sched-
uling primitives (e.g., Line 2 in Listing 7) in the process of com-
pilation. As HeteroCL [11] is a heterogeneous programming plat-
form, maintaining schedule explicitly in the process of Halide-to-
HeteroCL is essential. Therefore, we change the lowering method
for some Halide schedules (e.g., lazy_unroll introduced in Sec-
tion 3.2.2) as extensions. Similar schedule extensions are used for
other backend targets as well (e.g., gpu_tile) [7].

Table 1 lists the schedules supported by Halide and HeteroHalide,
and the corresponding schedule lowering methods. By default,
Halide uses immediate transformation to implement the sched-
ule directly into the IR. Loop transformation schedule primitives,
e.g., reorder, split, do not have special semantics in HeteroCL,
and, therefore, there is no need to create new scheduling primitives
for them. However, for the parallelization scheduling primitives,
e.g., unroll, parallel, the explicit scheduling information is re-
quired in HeteroCL to generate efficient backend code. For example,
if the unrolling schedule is applied immediately and the Halide IR
is in the form of Listing 4, HeteroCL will not be able to generate
SODA DSL and leverage its highly-efficient spatial architecture.
Therefore, we create lazily-applied Halide schedules lazy_unroll
and lazy_parallel to transfer scheduling information explicitly
to generate efficient FPGA accelerators. Note that not all scheduling
primitives are applicable to both Halide and HeteroHalide. For ex-
ample, vectorize is only applicable to Halide, whereas pipelining



Table 2: Applications used in the evaluation.

Application Description

Harris Harris corner detector.
Gaussian 3 × 3 Gaussian filter.
Unsharp Unsharp masking filter.
Blur Average over 3 × 3 window.
Linear Blur Blur with two linear transformations.
Stencil Chain 3 × 3 kernel chained 3 times.
Dilation Maximum over 3 × 3 window.
Erosion Minimum over 3 × 3 window.
Median Blur Median over 3 × 3 window.
Sobel Sobel edge detector.
GEMM General matrix multiplication.
K-Means K-means clustering.

Table 3: LoC at different levels in the flow. HeteroHalide
and HeteroCL counts are algorithm + schedule. Numbers in
parentheses are ratios over HeteroHalide.

Application HeteroHalide HeteroCL Generated HLS Generated

Harris 26 + 14 72 + 22 (2.4×) 14224 (355.6×)
Gaussian 8 + 3 23 + 8 (2.8×) 17181 (1561.9×)
Unsharp 13 + 5 46 + 12 (3.2×) 21383 (1187.9×)
Blur 2 + 4 9 + 4 (2.2×) 1455 (242.5×)

Linear Blur 11 + 10 22 + 10 (1.5×) 1072 (51.0×)
Stencil Chain 15 + 10 14 + 8 (0.9×) 9061 (362.4×)
Geo. Mean — (2.0×) (378.6×)

is implicitly inferred in HeteroHalide (and thus no explicit schedul-
ing primitive is required nor provided).

4 EVALUATION
We now present our experiments, followed by the evaluation on
two parts: 1) programming efficiency, where we show the simplified
migration effort from Halide to FPGA accelerators via the lines of
code (LoC) comparison, and 2) accelerator performance, comparing
the throughput of the FPGA code generated by HeteroHalide and
the throughput of 28 CPU cores with several real-world applica-
tions. This section also compares the peak performance between
the accelerators generated by HeteroHalide and those reported by
Halide-HLS [14]. The applications we use in the evaluation and the
corresponding description are listed in Table 2.

4.1 Programming Efficiency
In this section, we compare the lines of code (LoC) of the same
program at different levels in the flow to demonstrate the different
workload required when compiling Halide to FPGA accelerators.

The compilation flow from HeteroHalide consists of the follow-
ing steps: Halide to HeteroCL, HeteroCL to HLS code, and finally
to an FPGA accelerator. It is possible to obtain the same FPGA ac-
celerator by manually writing the corresponding code at any level
in the flow, but the required programming effort is significantly
different. Table 3 shows the LoC comparison among the code at
different levels. For most applications, Halide code is more com-
pact than HeteroCL code. Both of them are orders of magnitude
more compact than our generated HLS code. The partial reason of
this significant difference is HLS code generated by a compiler is
redundant compared to optimized HLS code.

Table 4: LoC comparison between HeteroHalide and Xilinx
xfOpenCV Library [19]. HeteroHalide counts are algorithm
+ schedule. xfOpenCV counts include only the core func-
tions, not the utility libraries. Numbers in parentheses are
ratios over HeteroHalide.

Application HeteroHalide xfOpenCV

Harris 26 + 14 117 (2.9×)
Gaussian 8 + 3 104 (9.5×)
Dilation 2 + 1 80 (26.7×)
Erosion 2 + 1 79 (26.3×)

Median Blur 2 + 1 81 (27.0×)
Sobel 3 + 2 208 (41.6×)

Geo. Mean — (16.7×)

Table 5: Performance comparison with Halide-HLS [14].

Benchamrk Data Sizes & Type Halide-HLS HeteroHalide Speedup

Harris 640 × 640, UInt8 2 pixel/cycle 4 pixel/cycle 2
Gaussian 640 × 640, UInt8 2 pixel/cycle 8 pixel/cycle 4
Unsharp 640 × 640 × 3, UInt8 1 pixel/cycle 4 pixel/cycle 4
Geo. Mean — — — 3.175

Table 4 summarizes the LoC comparison between the Halide
code and the Xilinx xfOpenCV library [19]. The kernels in the
xfOpenCV library are optimized for Xilinx FPGAs and SoCs, based
on the OpenCV computer vision library. Compared with the HLS
code optimized by experts, Halide code is still more concise and
compact. In summary, for both approaches without HeteroHalide,
i.e., rewriting Halide in HeteroCL and HLS respectively, the work-
load for programmers increases, not to mention the additional
knowledge required. HeteroHalide greatly simplifies the process of
migrating Halide to FPGA accelerators.

4.2 Accelerator Performance
In this section, we first evaluate the accelerators generated by Het-
eroHalide. The experiments for CPU are performed on an Ubuntu
16.04 server with two Intel Xeon 2680v4 CPU (28 cores in total)
and 64 GiB DDR4 memory. Our target FPGA is the state-of-the-art
Xilinx VU9P FPGA, whose default target frequency is 250 MHz.

Table 6 shows the applications and overall evaluation results
of each application with certain data sizes and type, including the
speedup over CPU, the energy efficiency gain, the accelerator’s
maximum throughput for stencil applications, and the resource uti-
lization given by the post-synthesis report. Since Halide originated
as an image processing DSL and stencil kernels are extensively used,
we mainly focus on those in the experiments. To demonstrate the
capability of using multiple backends via leveraging HeteroCL [11],
two other applications, GEMM and K-Means, that are not in the
image processing domain are included as well. The energy effi-
ciency gain is the accelerator-to-CPU ratio and is calculated based
on the thermal design power. The throughput of accelerators is
memory-bounded and is calculated based on the total bandwidth
and the data type width of the application. For the CPU execution
of the Halide [15] programs, we use the same scheduling strategies
as the examples provided in the open-source Halide repository [7].
The specific parameters such as the unroll factor and tiling size are
manually fine-tuned in our testing environment. We leverage the
auto-scheduling feature of Halide [13] to compare our manual fine-
tuned schedules with the optimal strategies generated by Halide



Table 6: Evaluation results of accelerators generated by HeteroHalide. The speedup is HeteroHalide over 28 CPU cores.

Benchmark Data Size & Type #LUT #FF #DSP #BRAM Throughput Energy Efficiency Speedup Pattern Back End

Harris 2448 × 3264, UInt8 55198 64427 264 80 32 pixel/cycle 29.11 10.31 Stencil SODA [2]
Gaussian 2160 × 3840, UInt8 67298 41496 768 0 32 pixel/cycle 17.17 6.08 Stencil SODA
Unsharp 2448 × 3264 × 3, UInt8 47683 33114 400 24 32 pixel/cycle 9.57 3.39 Stencil SODA
Blur 648 × 482, UInt16 6821 8209 32 0 16 pixel/cycle 10.98 3.89 Stencil SODA

Linear Blur 768 × 1280 × 3, Float32 31049 39369 536 16 8 pixel/cycle 12.65 4.48 Stencil SODA
Stencil Chain 1536 × 2560, UInt16 61230 46174 48 192 16 pixel/cycle 4.29 1.52 Stencil SODA

Dilation 6480 × 4820, UInt16 13046 12114 0 64 32 pixel/cycle 4.69 1.66 Stencil SODA
Median Blur 6480 × 4820, UInt16 14388 10066 0 64 32 pixel/cycle 12.51 4.43 Stencil SODA

GEMM 1024 × 1024 × 1024, Int16 454492 800283 2507 932 — 9.97 3.53 Systolic Array PolySA [6]
K-Means 320×32, k=16, Int32 212708 235011 1536 32 — 29.00 10.27 General Merlin Compiler [4, 17]
Geo. Mean — — — — — — 11.71 4.15 — —

auto-scheduler on CPU. The geometric mean of CPU speed ratio
between manual and auto scheduling tested on several benchmarks
is 1.15, which shows that our manual optimizations are on par
with the highly optimized schedules after extensive design-space
exploration.

Note that the CPU code generated by Halide is capable of utiliz-
ing all 28 cores available on the server. The experimental results
show that the accelerators generated by HeteroHalide achieves
4.15× average speedup and 11.71× energy efficiency gain over CPU.

Table 5 lists the peak performance of the accelerators gener-
ated by HeteroHalide and Halide-HLS [14] for three applications.
Since we were unable to reproduce the results using the current
synthesis tools, for Halide-HLS we use the reported numbers in
their paper [14]. The throughput of HeteroHalide is obtained using
the same Zynq 7020 device as Halide-HLS. The results show that
for various applications, HeteroHalide achieves 2 ~ 4× speedup
over Halide-HLS. Clearly, HeteroHalide is more efficient to migrate
Halide programs to FPGA accelerators.

5 RELATEDWORK
There exist projects that can compile image domain-specific lan-
guages (DSL) into hardware code. Darkroom [9], HIPAcc [16], and
PolyMage [3] create their own image DSLs and provide compilation
flow from the DSLs to hardware code, generating efficient FPGA
and / or ASIC designs. All these compiler tools use a line buffered
pipeline microarchitecture template to help emit efficient hardware
designs. Different from these image DSLs, HeteroHalide leverages
the existing Halide [15] infrastructure and keeps algorithms decou-
pled from schedules, which greatly improves the portability and
composability of code. The moderate modifications on the schedul-
ing part of existing Halide programs enables fast adoption of FPGA
accelerators for the vast number of Halide programs.

Similarly, Halide-HLS [14] presents a Halide-to-HLS compiler,
providing an automatic pass to implement Halide programs to hard-
ware designs. However, the Halide-HLS compiler is not designed in
a composable and hierarchical way, i.e., its scheduling primitives
and the corresponding code generators are tightly and directly cou-
pled with the underlying microarchitecture template. This makes it
difficult to leverage state-of-the-art accelerator microarchitectures
for the best performance and adapt to behavior changes in the ven-
dor tools. Moreover, Halide-HLS does not have the option to delay
loop transformations and does not handle the scheduling semantics
in the most efficient way. As a result, it does not scale as well as
HeteroHalide, which is shown in Table 5.

In comparison, HeteroHalide chooses HeteroCL [11] as the in-
termediate representation (IR) of the whole flow. With HeteroCL
as an actively developing heterogeneous programming infrastruc-
ture that supports multiple backends and the corresponding ef-
ficient spatial architectures, any behavior changes in the vendor
tools would be handled by HeteroCL and its backends, minimizing
the maintenance burden. Furthermore, if hardware experts find
a more efficient microarchitecture for image processing applica-
tions, Halide programmers would be able to leverage it as soon as
HeteroCL provides a backend. Note that since HeteroCL is designed
to play a role like what LLVM does for connecting the frontend
source code (e.g., C, C++, Go, Rust, etc.) and the backend machine
architecture (e.g., x86, x64, ARM, PowerPC, etc.), maintaining a
HeteroCL-to-DSL backend enables much more code reuse than a
direct Halide-to-DSL backend.

6 CONCLUSION
In this paper, we present HeteroHalide, an end-to-end system for
migrating Halide to efficient FPGA accelerators. Compared to ex-
isting approaches, HeteroHalide greatly simplifies the flow from
Halide to hardware. We extend the existing Halide schedules in
order to generate efficient code for the backend tools. With only
moderate modifications on the scheduling part of Halide programs,
HeteroHalide is able to generate accelerators with 4.15× average
speedup over 28 CPU cores and 2 ~ 4× speedup over existing work.
Moreover, by choosing HeteroCL, a heterogeneous programming
infrastructure that supports multiple backends, as the intermediate
representation (IR) of HeteroHalide, the frontend and backend of
HeteroHalide is decoupled with high extensibility. The evaluation
demonstrates significant gains in both performance and program-
ming efficiency for programmers.
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