
Resource-Aware Throughput Optimization for High-Level
Synthesis

Peng Li1 Peng Zhang1 Louis-Noël Pouchet2,1 Jason Cong1

{pengli, pengzh, pouchet, cong}@cs.ucla.edu
1Computer Science Department, University of California, Los Angeles

2Department of Computer Science and Engineering, The Ohio State University

ABSTRACT
With the emergence of robust high-level synthesis tools to auto-
matically transform codes written in high-level languages into RTL
implementations, the programming productivity when synthesizing
accelerators improves significantly. However, although the state-
of-the-art high-level synthesis tools can offer high-quality designs
for simple nested loop kernels, there is still a significant perfor-
mance gap between the synthesized and the optimal design for real-
world complex applications with multiple loops.

In this work we first demonstrate that maximizing the throughput
of each individual loop is not always the most efficient approach
to achieving the maximum system-level throughput. More area-
efficient non-fully pipelined design variants may outperform the
fully-pipelined version by enabling larger degrees of parallelism.
We develop an algorithm to determine the optimal resource usage
and initiation intervals for each loop in the applications to achieve
maximum throughput within a given area budget. We report exper-
imental results on eight applications, showing an average of 31%
performance speedup over state-of-the-art HLS solutions.

Keywords
High-level Synthesis; Throughput Optimization; Resource Shar-
ing; Area Constraint

1. INTRODUCTION
The automatic transformation of algorithms written in high-level

languages (e.g., C, C++, SystemC) to low-level implementations by
high-level synthesis (HLS) can be the key enabling technology to
address the programmability challenges of FPGA-based accelera-
tor architectures. After three decades of research and development
by academia and industry, HLS has become a promising produc-
tivity boost for the semiconductor industry [1]. For example, the
Xilinx Vivado HLS tool [2] based on AutoPilot [3] is now part of
the standard Xilinx Vivado Suite available to every Xilinx FPGA
designer.

With effective operation scheduling and resource binding/shar-
ing algorithms, the state-of-the-art HLS tools can generate highly
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optimized RTL for a single module [4][1]. However, fully utiliz-
ing the impressive performance provided by FPGA devices often
requires the designs to be implemented with massive parallelism.
Traditional FPGA design flows follow a two-step approach. First,
a single replica of the application is optimized intensively for best
performance through efficient computation pipelines. Then the op-
timized replica is duplicated to fully utilize the overall capacity of
the target FPGA device.

It is commonly believed that efficient loop pipelining can boost
the performance of a single loop with acceptable area overhead.
For example, [5] shows that with full loop pipelining enabled by
using on-chip memory partitioning, the evaluated computation ker-
nels can achieve an average speedup of 5.6X at the cost of only
45% area increase. While this is true for a single loop, for acceler-
ators with multiple sequential loops, if the area increase to support
loop pipelining is not shared efficiently across loops, the overall
performance-area efficiency may be degraded.

In this paper, we first show a somewhat counter-intuitive ex-
ample that maximizing the pipeline throughput of one replica will
not always generate optimal designs with coarse-grained duplica-
tions. With less aggressive loop pipelining, logic components may
be more efficiently shared among loops with better performance
per area ratio. Duplicating such a design will achieve a higher
global throughput. The optimize-then-duplicate approach fails to
find such optimal solutions.

Then, we propose a resource-aware throughput optimization al-
gorithm to identify the most efficient implementations by maxi-
mizing the resource sharing between different loops. The problem
is different from traditional resource-constrained operator schedul-
ing [6][7][8] or resource allocation and binding [9][10][11]. In-
stead of fine-grain control-data flow graphs (CDFGs), the inputs
of our algorithm are loops with parameterized initiation interval
(II). Different loop II will generate loop implementations with
a different number of shareable components, and the objective is
to improve the throughput by maximizing area efficiency through
resource sharing.

The work that is most relevant to this paper is [12], [13] and [14].
[12] focused on using module replication to meet the throughput
target for streaming applications. [13] and [14] proposed a com-
bination of module selection and replication algorithm based on a
synchronous data flow (SDF) representation of streaming applica-
tions. All of these focus on streaming applications where all mod-
ules are executed in parallel and no resource can be shared among
different modules. The techniques proposed in this paper can be
applied to streaming applications as a special case, but also to more
general applications where not all loops can be executed in parallel
due to inter-loop dependence. For example, iterative stencil appli-
cations [15] are such examples with loop-carried dependence.



The contributions of the work include:

• We address the fact that high throughput replicas with ef-
ficient computation pipelines may not be good candidates
for building massive parallel accelerators. Balanced replicas
with efficient resource sharing between loops can be better
building blocks.

• We formulate a resource-aware throughput optimization prob-
lem by simultaneously addressing the concept of loop pipelin-
ing, module selection, duplication and resource sharing within
a unified framework. To the best of our knowledge, this the
first attempt to co-optimize these problems within a single
formulation.

• We make some initial attempts to solve the problem effi-
ciently with branch-and-bound and ILP approaches.

This paper is organized as follows. Section 2 uses a motiva-
tional example to demonstrate the design trade-offs in resource-
aware throughput optimization. Section 3 formulates the problem
and Section 4 proposes several methods to solve the problem effi-
ciently. Section 5 describes some implementations in more details.
Section 6 presents the efficiency of the proposed throughput opti-
mization algorithm over traditional approaches with experimental
results and the conclusions are presented in Section 7.

2. A MOTIVATIONAL EXAMPLE
We now illustrate the resource-aware throughput optimization

problem using a motivational example: Discrete Wavelet Transfor-
mation (DWT), an algorithm frequently used in various multimedia
applications.

Fig. 1 illustrates a computation kernel in DWT. Array tmp is
a floating-point (FP) array and a1, a2, a3, a4, k1, k2 are floating-
point variables. There are four loops in the code segment, namely
L1 to L4. All the FP operations (+, ∗) are emphasized in the code
with (⊕,⊗).

f o r i =0 t o n−1 do
L1 : f o r j = 1 t o m−3 s t e p 2 do

tmp [ i ] [ j ]⊕=a1⊗ ( tmp [ i ] [ j −1]⊕tmp [ i ] [ j + 1 ] ) ;
tmp [ i ] [m−1]⊕=2⊗a1⊗tmp [ i ] [m−2];
L2 : f o r j = 2 t o m−1 s t e p 2 do

tmp [ i ] [ j ]⊕=a2⊗ ( tmp [ i ] [ j −1]⊕tmp [ i ] [ j + 1 ] ) ;
tmp [ i ] [ 0 ]⊕=2⊗a2⊗tmp [ i ] [ 1 ] ;
L3 : f o r j = 1 t o m−3 s t e p 2 do

tmp [ i ] [ j ]⊕=a3⊗ ( tmp [ i ] [ j −1]⊕tmp [ i ] [ j + 1 ] ) ;
img [ j / 2 + m/ 2 ] [ i ] = k2⊗tmp [ i ] [ j ] ;

tmp [ i ] [m−1] = 2⊗a3⊗tmp [ i ] [m−2];
img [ (m−1)/2 + m/ 2 ] [ i ]= k2⊗tmp [ i ] [m−1];
L4 : f o r j = 2 t o m−1 s t e p 2 do

tmp [ i ] [ j ]⊕=a4⊗ ( tmp [ i ] [ j −1]⊕tmp [ i ] [ j + 1 ] ) ;
img [ j / 2 ] [ i ] = k1⊗tmp [ i ] [ j ] ;

tmp [ i ] [ 0 ] = 2⊗a4⊗tmp [ i ] [ 1 ] ;
img [ 0 ] [ i ] = k1⊗tmp [ i ] [ 0 ] ;

Figure 1: Discrete Wavelet Transformation (DWT)

Table 1 shows the FP operations performed in each loop and
FP operators required if each loop will be fully pipelined. Due to
the inter-loop data dependence, all loops must be executed sequen-
tially. To save area, FP operators can be shared among loops. A

total of two FP adders and two FP multipliers are needed for all the
loops to be pipelined.

Table 1: FP Ops in DWT (Fully Pipelined)

L1 L2 L3 L4
FP operations 2⊕, 1⊗ 2⊕, 1⊗ 2⊕, 2⊗ 2⊕, 2⊗

Loop II 1 1 1 1
FP operators 2+ , 1* 2+ , 1* 2+ , 2* 2+ , 2*

Fig. 2 illustrates the execution graph of all the FP operators. One
FP multiplier is idle during the execution of loops L1 and L2. Con-
sidering replication to exploit coarse-grained parallelism, low area
utilization will likely degrade the overall performance.

Figure 2: Fully Pipelined DWT Implementation

To improve the utilization of FP multipliers, we can have an al-
ternative implementation that instantiate only one FP multiplier.
Under such circumstances, loops L3 and L4 cannot be fully pipelined
due to resource constraints. Table 2 shows the FP operations, loop
II and FP operators under this configuration. A total of two FP
adders and one FP multipliers are needed.

Table 2: FP Ops in DWT (Non-fully Pipelined)

L1 L2 L3 L4
FP operations 2⊕, 1⊗ 2⊕, 1⊗ 2⊕, 2⊗ 2⊕, 2⊗

Loop II 1 1 2 2
FP operators 2+ , 1* 2+ , 1* 1+ , 1* 1+ , 1*

Fig. 3 illustrates the execution graph of all the FP operators in
the non-fully pipelined scenario. The execution time L3 and L4
will be longer compared to the case of Fig. 2 due to the larger loop
II . However, with II = 2, each fully-pipelined FP adder and
multiplier can be virtualized to support two FP operations in each
loop iteration. In this case, one FP adder is always idle during the
execution of L3 and L4.

We use Xilinx Virtex-7 XC7V585T FPGA device as a test plat-
form to evaluate the throughput of the two implementations. 512*512
image size is used in the experiments. Experimental results are
shown in Table 3. Area and critical path data are reported by
Vivado after place and route. Cycle data are reported by Vivado
HLS RTL-level simulation. All performance numbers are normal-
ized against the performance of the single replica performance of
the fully-pipelined implementation. From the table, we observe
that the single-replica performance of the fully-pipelined version is



Table 3: Experimental Results for DWT

Implementation LUT FF DSP Cycles CP(ns) Replicas Nomalized Perf
Replica

Nomalized System Perf
Fully 2855 1985 28 590337 8.800 45 1 45

NonFully 2716 1830 17 851457 8.821 74 0.71 50.7

Figure 3: Non-fully Pipelined DWT Implementation

29% higher than the non-fully-pipelined version. However, with
74/45− 1 = 64% more replicas, the total performance of the non-
fully-pipelined version is 13.7% higher than the fully-pipelined ver-
sion after replication.

The relative efficiency comparison between the two DWT imple-
mentations will depend on many factors, including the area of both
FP operators, the area of other components, trip counts of all loops
and the available resource in the target device. In this paper we for-
mulate the resource-aware throughput optimization problem with
all these variables and propose some efficient solutions to solve the
problem.

3. PROBLEM FORMULATION
From the motivational example, we can see that each loop in

the accelerator can have different implementations with different
resource usage and performance. Some resource can be shared
among loop kernels. The challenge is to find the design with opti-
mal performance under a given area constraint with resource shar-
ing. In this section we will provide a formulation of the problem.
The resource-aware throughput optimization problem can be for-
mulated as:

Maximize D ∗ PerformancePerReplica (1)
Subject to D ∗AreaPerReplica ≤ Areaavailable (2)

wherePerformancePerReplica andAreaPerReplica represent the
performance and area of single replica and D are the number of
replicas to be duplicated at coarse-grained level.

With resource sharing, the total area of the entire accelerator will
probably be less than the sum of each loop kernels.

3.1 Shareable Component Candidate
Logic components (such as operators) can be shared among dif-

ferent statements/loops to save area. However, multiplexers in-
troduced by component sharing is nontrivial on the FPGA plat-
form. For example, the area, delay and power data of a 32-to-1
multiplexer are almost equivalent to an 18-bit multiplier in mod-
ern FPGA designs [16]. Therefore, not all components will benefit
from resource sharing. The state-of-the-art HLS tools will only
share the components with enough complexity compared to the I/O
multiplexers, or shareable component candidate.

DEFINITION 1 (SHAREABLE COMPONENT CANDIDATE). A
Shareable Component Candidate is a component whose area is at
least δ times larger than a 32-bit 8-to-1 multiplexer.

AreaComponent

Areamux
≥ δ

On Xilinx Virtex-7 FPGAs, a 32-bit 8-to-1 multiplexer will take
96 LUTs and δ is set to 10 in our experiment. Table 4 shows
the estimated area consumption of some shareable components on
Virtex-7 FPGAs.

Table 4: Area of Example Shareable Component Candidates

LUT FF DSP
DP ± 781 445 3
DP * 203 299 11
DP / 3242 2230 0√
x 1919 1303 0

1
x

246 440 14
> 113 130 0
sin 9662 2597 17

Integer add/substract operations are not shareable component can-
didates.

DEFINITION 2 (LOOP SHAREABLE LOAD VECTOR). Suppose
that there areM types of shareable component candidates (R1,R2,
..., RM ) in an application, the shareable load vector of a loop Lk

is a vector 〈s1,k, s2,k, ..., sj,k, ..., sM,k〉 where sj,k is the number
of shareable component candidate Rj in loop Lk.

EXAMPLE 1. The shareable load vectors of loops L1 and L2 in
Figure 1 are 〈2, 1〉. The shareable load vectors of loops L3 and L4
in Figure 1 are 〈2, 2〉.

DEFINITION 3 (LOOP RESOURCE ALLOCATION VECTOR).
Suppose that there areM types of shareable component candidates
(R1, R2, ..., RM ) in an application, the resource allocation vector
of a loop Lk is a vector 〈a1,k, a2,k, ..., aj,k, ..., aM,k〉 where aj,k
is the number of shareable component candidates Rj instantiated
for loop Lk.

EXAMPLE 2. The resource allocation vectors of loops L1 and
L2 in Figure 1 of the non-pipelined version are 〈1, 1〉. The re-
source allocation vectors of loops L3 and L4 in Figure 1 of the
non-pipelined version are 〈2, 1〉.

DEFINITION 4 (TOTAL RESOURCE ALLOCATION VECTOR).
Suppose that there areN Loops (L1, L2, ..., LN ) in an application,
the resource allocation vector of the entire accelerator is a vector
〈a1, a2, ..., aj , ..., aM 〉 where aj is the number of shareable com-
ponent candidates Rj instantiated for the entire accelerator.



EXAMPLE 3. The resource allocation vector of the fully-pipelined
DWT accelerator is 〈2, 2〉. The resource allocation vector of the
non-fully-pipelined DWT accelerator is 〈2, 1〉.

PROPERTY 1. ∀1 ≤ j ≤M,maxN
k=1 aj,k ≤ aj ≤

∑N
k=1 aj,k.

The total number of shareable component candidates instanti-
ated in the accelerator should be no more than the total number of
components instantiated in each loop.

3.2 Performance and Area Estimation
In this section we describe the performance and area estimation

methodology adopted in the paper.
Loop pipelining [17] is a key optimization technique in high-

level synthesis. Using the technique, parallelism across loop iter-
ations can be exploited by initiating the next iteration of the loop
before the completion of the current iteration. Operations from sev-
eral iterations are overlapped by loop pipelining to decrease the to-
tal execution cycles of the entire loop. The throughput achieved is
limited both by resource constraints and data dependencies in the
application.

Cyclek = IIk ∗ (TCk − 1) +Dthk (3)

whereCyclek, IIk, TCk, Dthk are the total execution cycle, pipeline
initiation interval, trip count and pipeline depth of loop k respec-
tively.

The total execution cycle of a pipelined loop can be estimated us-
ing Eq. (3). With given input data, the trip count of each loop (TCk

in Eq. 3) is fixed. The minimum initiation interval IIk is a func-
tion of the resource allocation vector 〈a1,k, a2,k, ..., aM,k〉 defined
by Eq. (4). Minimal IIk is also constrained by loop-carried de-
pendence or memory port conflict, as shown in Eq.(5). Loop depth
Dthk is also affected by the resource allocation vector, but in this
paper we made a simplification by treating it as a constant. When
with non-trivial trip counts, the estimation could be high accurate,
as shown in Sec. 6.

∀1 ≤ j ≤M, IIk ∗ aj,k ≥ sj,k (4)
∀1 ≤ k ≤ N, IIk ≥ IIMin

k (5)

The area consumption of a loop can be estimated by accumu-
lating the areas of shareable and non-shareable component candi-
dates. Multiplexers for resource sharing are non-shareable compo-
nent candidates. However, since the area of shareable component
candidates are significantly larger than the multiplexers by defini-
tion, in this paper, we made a simplification by assuming that the
area of non-shareable component candidates is irrelevant to the re-
source allocation vectors. In Sec. 6 we will validate these assump-
tions by comparing the estimated results and synthesized results
with real examples.

Suppose the resource allocation vector in the entire accelerator is
〈a1, a2, ..., aM 〉, the total area of the application can be estimated
by:

Area =

N∑
k=1

AreaNS
k +

M∑
j=1

(AreaSj ∗ aj) (6)

where AreaNS
k is the area of non-shareable component candi-

dates in loop k and AreaSj is the area of shareable component can-
didate j.

For FPGA devices, area consumption can be represented by a
vector 〈DSP,LUT, FF 〉, and Equation 6 can be formulated as:

DSP =

N∑
k=1

DSPNS
k +

M∑
j=1

(DSPS
j ∗ aj) (7)

LUT =

N∑
k=1

LUTNS
k +

M∑
j=1

(LUTS
j ∗ aj) (8)

FF =

N∑
k=1

FFNS
k +

M∑
j=1

(FFS
j ∗ aj) (9)

3.3 Accelerators with Total Inter-Loop Depen-
dency

If all loops in an accelerator have to be executed in sequence due
to dependence, the total execution cycles can be estimated by ac-
cumulating the cycles of individual loops, as shown in Eq. (10). In
such a case, all the shareable component candidates can be reused
among loops, and the total shareable component candidates can be
calculated by Eq. (11).

Cycle =

N∑
k=1

Cyclek (10)

aj = maxNk=1aj,k (11)

With Eq. (3) to Eq. (11), resource-constrained performance opti-
mization with resource sharing among loops for an accelerator with
sequential loops can be formulated as:

Maximize

Replica/Cycle (12)

Subject to

DSP =
∑N

k=1DSP
NS
k +

∑M
j=1(DSP

S
j ∗ aj) (13)

DSP ∗Replica ≤ DSPAvail. (14)
LUT =

∑N
k=1 LUT

NS
k +

∑M
j=1(LUT

S
j ∗ aj) (15)

LUT ∗Replica ≤ LUTAvail. (16)
FF =

∑N
k=1 FF

NS
k +

∑M
j=1(FF

S
j ∗ aj) (17)

FF ∗Replica ≤ FFAvail. (18)
∀1 ≤ j ≤M,∀1 ≤ k ≤ N, IIk ∗ aj,k ≥ sj,k (19)

∀1 ≤ k ≤ N,Cyclek = IIk ∗ (TCk − 1) +Dthk (20)

∀Chain{Lt1 , ..., LtL} ⊆ P, Cycle ≥
∑L

t=1 Cycletk (21)

∀Antichain {Lt1 , Lt2 , ..., LtL} ⊆ P, aj ≥
∑L

t=1 aj,tk(22)

whereD, Cycle, Cyclek, aj , aj,k, IIk are integer variables,Area
is a rational variable, andAreaNS

k ,AreaSj ,AreaAvail., sj,k, IIMin
k ,

TCk, Dthk are constant values.

3.4 Accelerators with Partial Inter-Loop De-
pendency

Multiple loops without data dependence can be parallelized by
HLS tools to improve performance. In this section, we will dis-
cuss the resource-constrained performance optimization for more
general cases with arbitrary dependence between loops.

Since dependence relations between loops are reflexive, antisym-
metric and transitive, they can be defined as a partial order. The
partially ordered set, or poset for short, defined by loop dependence
information is referred to the loop dependence poset P .



DEFINITION 5 (COMPARABLE). For any two elements a and
b of a partially ordered set P , if a ≤ b or b ≤ a, then a and b are
comparable. Otherwise they are incomparable.

L1

L2

L3

L5

L4

Figure 4: Example Loop Dependence Graph

In Fig. 4, L1 are L2 and comparable with L2 < L1; L2 and L3

are incomparable.

DEFINITION 6 (CHAIN). A chain in a poset P is a subset
C ⊆ P such that any two elements in C are comparable.

{L1, L2, L4, L5} is a chain in Fig. 4.

DEFINITION 7 (ANTICHAIN). An antichain in a poset P is a
subset A ⊆ P such that any two elements in A are incomparable.

{L2, L3} is an antichain in Fig. 4.
If loops in an accelerator can be parallel, the total execution cy-

cles of the accelerator can be estimated by the maximum weighted
chain of the dependence poset P , as shown in Eq. (23).

∀Chain {Lt1 , Lt2 , ..., LtP } ⊆ P, Cycle ≥
P∑

t=1

Cycletk (23)

Under such circumstances, loops in an antichain may execute in
parallel. Therefore, loops in an antichain will not share compo-
nents with conservative scheduling. The total number of shareable
component candidates can be calculated by the maximum weighted
antichain of the dependence poset P , as shown in Eq.(24).

∀Antichain {Lt1 , Lt2 , ..., LtP } ⊆ P, aj ≥
P∑

t=1

aj,tk (24)

Area-constrained performance optimization with resource shar-
ing for an accelerator with arbitrary loop dependence can be for-
mulated using Eq. (12) to (20), (23) and (24).

4. EFFICIENT SOLUTIONS
In Sec. 3, we formulated the problem of resource-constraint per-

formance optimization with resource sharing. In the formulation,
the objective and some constraints (12, 18 and 19) are not linear
or posynomials (17, 20-24). Therefore, the problem cannot be di-
rectly solved by integer linear programming (ILP) or mixed integer
geometric programming. In this section we will describe how to
solve the problem with different approaches.

4.1 Enumeration-based Approach
The simplest approach to solving the problem is through enumer-

ation. The initiation intervals of each loop IIk can be bounded us-
ing Eq. (25). Given loop initiation interval IIk, the shareable com-
ponent candidates allocated aj,k can be calculated using Eq.(26).

The total execution cycle and area can be estimated use Eq. (3),
(6), (23) and (24).

∀1 ≤ k ≤ N,
IILB

k ≤ IIk ≤ IIUB
k = max(IILB

k ,maxMj=1sj,k) (25)

∀1 ≤ j ≤M,∀1 ≤ k ≤ N, aj,k = dsj,k
IIk
e (26)

Note that not all IIs in the range given by Eq. (25) will possibly
generate solutions with Pareto-optimal performance under resource-
constraint. Some values can be easily filtered out with local loop
information.

If II(1)k < II
(2)
k and ∀1 ≤ j ≤ M, d sj,k

II
(1)
k

e = d sj,k

II
(2)
k

e then

II
(2)
k is not a candidate II for Pareto-optimal solution.

EXAMPLE 4. Given a loop with shareable load vector s =
〈16, 5〉 and IILB = 3, the candidate IIs for Pareto-optimal solu-
tion and allocated component vector are listed as in the following
table:

II 3 4 5 6 8 16
Resource 〈6, 2〉 〈4, 2〉 〈4, 1〉 〈3, 1〉 〈2, 1〉 〈1, 1〉

Only 6 different IIs out of 14 possible values can serve as can-
didates for Pareto-optimal solution, while other II variants can be
filtered out with only local loop information.

With the increase of loops and shareable component candidates,
the simple brute-force enumeration approach may not scale well.
Instead of enumerating all legal transformations in a brute-force
approach, the features of resource-constrained performance opti-
mization can be used to prune suboptimal partial results to greatly
reduce the computation complexity of finding optimal solutions for
large designs. In this section we propose an efficient branch-and-
bound algorithm for the problem considering the weights of dif-
ferent loops and the interaction between partial loop II selection
results and maximum performance.

We observe that the execution cycle of a loop is proportional
to its trip count. Therefore, design choices of loops with larger trip
counts will have a larger impact on the overall resource-constrained
performance. Based on this observation, we first sort the loops in
the entire accelerator according to their trip counts and travel the
enumeration tree branch by branch from the loop with the largest
trip count to the loop with smallest trip count.

For each unenumerated loopLk, we can estimate the lower bounds
and upper bounds of area and execution cycle with Eq. (27) - (30),
where IIUB

k is defined in Eq. (25). The lower bound of the per-
formance at branch B is calculated by II and aj of the enumerated
loops and CycleLB and aLB

j of the unenumerated loops. The up-
per bound of the performance at branch B is calculated by II and
aj of the enumerated loops and CycleUB and aUB

j of the unenu-
merated loops.

aLB
j,k = (sj,k ≥ 1) (27)

CycleLB
k = IILB

k ∗ (TCk − 1) +Dthk (28)

aUB
j,k = sj,k (29)

CycleUB
k = IIUB

k ∗ (TCk − 1) +Dthk (30)

We can prove that the performance range of a child branch is al-
ways covered by that of its parent branch: LBParent ≤ LBChild ≤



UBChild ≤ UBParent. If two branches have non-overlapped
performance ranges, we can prune the branch with smaller perfor-
mance and all its sub-branches without losing optimality.

4.2 Integer Linear Programming
Given an accelerator with N loops and the number of candidate

IIs of each loop represented as C1, C2, ..., CN , the total enumer-
ation number is

∏N
k=1 Ck. The maximum enumeration number

in all our experiments will not exceed 104 and enumeration-based
approach will finish within a second. Therefore, we just use the
enumeration-based approach in our experiments. In this section,
we show that the problem can be converted into an ILP optimiza-
tion by parameterizing some variables and introducing extra binary
variables, which could help on large scale problems.

The duplication factor D can be bounded by Eq. (31).

D ≤ AreaAvail.

(
∑N

k=1Area
NS
k +

∑M
j=1Area

S
j )

(31)

For practical problem on the current platform,D is typically less
than 100. Under such an assumption, we can parameterize the du-
plication factor D as a constant value and use an outer loop to enu-
merate D for the global optimal solution.

Then we introduce a set of binary variables δj,k,l,m, where j is
the type of the shareable component candidates (1 ≤ j ≤ M ),
k is the loop index (1 ≤ k ≤ N ), l is the instance index of the
shareable component candidate j in loop k (1 ≤ l ≤ sj,k) and the
component is scheduled to cycle m. With modulo scheduling used
by loop pipelining, 1 ≤ m ≤ IIUB

k , where IIUB
k is bounded by

Eq. (25). δj,k,l,m = 1 indicates that the l-th type-j shareable com-
ponent candidate in loop k is scheduled to cycle m under modulo
scheduling.

With these binary variables, we can replace the non-linear con-
straint Eq. (19) with a set of linear constraints, shown in Eq. (39) -
(43). Eq. (40) describes a shareable component candidate is sched-
uled to one and only one cycle with modulo scheduling. Together
with Eq. (40), Eq. (39) declares δj,k,l,m as binary variables. Eq.
(41) converts resource constraint to an equivalent condition where
at most aj,k type-j shareable component candidates can be sched-
uled to the same cycle for loop k. γj,k,m in Eq. (42) equals to 1
means that at least one shareable component candidate j in loop
k is scheduled to cycle m. Therefor, IIk will be at least the total
number of cycles with γj,k,m = 1, as shown in Eq. (43).

Minimize

Cycle/D (32)

Subject to

Area =
∑N

k=1Area
NS
k +

∑M
j=1(Area

S
j ∗ aj) (33)

Area ∗D ≤ AreaAvail. (34)
∀1 ≤ k ≤ N, IIk ≥ IIMin

k (35)
∀1 ≤ k ≤ N,Cyclek = IIk ∗ (TCk − 1) +Dthk (36)

∀Chain {Lt1 , ..., LtP } ⊆ P, Cycle ≥
∑P

t=1 Cycletk (37)

∀Antichain {Lt1 , ..., LtP } ⊆ P, aj ≥
∑P

t=1 aj,tk (38)
∀j, k, l,m, δj,k,l,m ≥ 0 (39)

∀j, k, l,
∑IIUB

k
m=1 δj,k,l,m = 1 (40)

∀j, k,m,
∑sj,k

l=1 δj,k,l,m ≤ aj,k (41)
∀j, k, l,m, γj,k,m ≥ δj,k,l,m (42)

∀j, k,
∑IIUB

k
m=1 γj,k,m ≤ IIk (43)

where Cycle, Cyclek, aj , aj,k, IIk, δj,k,l,m, γj,k,m are inte-
ger variables, Area is a rational variable, and AreaNS

k , AreaSj ,
AreaAvail., sj,k, IIMin

k , TCk, Dthk are constant values. D is
treated as a constant value and an outer loop is used to enumerate
possible duplication factors for global optimal solution.

With such techniques, the problem formulation can be converted
to a set of ILP optimizations. The number of binary variables in-
troduced is less than the total number of shared components in the
entire accelerator multiplied by the maximum loop II defined by
Eq. (25).

5. IMPLEMENTATION ISSUES
In this section, we will discuss some implementation related is-

sues about performance optimization with resource constraint in
HLS.

5.1 Computing Load Information Extraction
The first implementation issue is how to extract the shareable

component information from the source code. It is relatively easy
to detect whether there is a certain type of components in a cer-
tain loop, but to get the exact number is nontrivial. Direct syntac-
tic extraction may be inaccurate due to the optimizations by HLS
tools such as common subexpression elimination. Implementing
a customized lightweight HLS tool [18] is one approach, but it is
time-consuming and difficult to match perfectly to the result of a
commercial HLS tool.

In this section, we will demonstrate how to extract the precise
shareable component information by profiling the transformed/in-
strumented input code using HLS tools.

We first preprocess the input code by removing loop-carried de-
pendence with HLS directives. Then we eliminate array port con-
flicts by replacing each distinct array reference with a temporal
volatile scalar. The transformed code will have a different function
with the original code, but the shareable component information
remains unchanged.

Then, for each type of shareable component, we add HLS re-
source constraint directives to instantiate one instance of the com-
ponent and perform HLS on the preprocessed code to obtain loop
II from the HLS report. In such cases, the number of shareable
components in each loop is equal to the II of the loop.

5.2 Trip Count Calculation
The second implementation issue is how to obtain the trip count

of each loop. For simple loops with constant bounds, trip count of
the loop can be calculated and reported by HLS tools. For loops
with non-constant but affine loop bounds,1 trip count of the loop
can be calculated by integer point counting [19] of iterator poly-
topes. For a general HLS-synthesizable program, trip counts can
be collected by executing the input code that has been instrumented
with trip count calculation statements. Program slicing [20] can be
used to reduce the profiled program to containing only statements
that impact the control-flow.

5.3 Parallelization and Resource Sharing be-
tween Loops

In the Vivado HLS [2], coarse-grained parallelization is explored
at function-level instead of loop-level. Loop-level parallelization is
not directly supported but can be achieved by capsuling the par-
allel loops into functions. However, for scalability consideration,

1The set of iterations of these loop bodies can be exactly captured
using inequalities on the values of the loop iterators and program
constants.



resource sharing in Vivado HLS is performed within a function.
Resource sharing between functions is disabled. These strategies
are incompatible with our assumptions that paralleled loops can
still share resources with their common preceding or succeeding
loops.

Our current implementation is to first capsule the parallel loops
into functions automatically and then modify the RTL generated by
HLS for resource sharing between modules.

6. EXPERIMENTAL RESULTS
In this section we present our experimental results using a set of

computation kernels and applications. We first use Segmentation
as case study to illustrate details of the proposed algorithm. Then,
we show the performance improvements of our proposed optimiza-
tion technique with extensive benchmarks.

Although our algorithm is applicable to both ASIC and FPGA
designs, we chose FPGA as the target device in this work because
of the availability of downstream behavioral synthesis and imple-
mentation tools. The Xilinx Virtex-7 XC7V585T FPGA device is
selected as the target hardware platform. The Xilinx Vivado HLS
Suite 2013.4 is used to perform the HLS and physical implementa-
tion flow. Techniques proposed in the paper are also be applicable
to other high-level synthesis tools e.g. LegUp [21].

6.1 Segmentation: A Case Study

Table 5: Program Information of Segmentation

± * /
√
x 1

x
> IILB TripCount

L1 3 1 1 0 0 0 1 32768
L2 6 3 0 0 0 0 2 29791
L3 5 7 1 1 1 1 1 32768
L4 3 6 0 0 0 0 2 29791
L5 16 2 1 0 1 2 5 32768

In this section, we use a more complicated benchmark Segmen-
tation algorithm as a case study to demonstrate details in the pro-
posed algorithm. Table 5 shows the basic information of the pro-
gram. There are five loops and six types of shareable component
candidates in the design. Some loops (L2, L4, L5) can not be fully
pipelined because of loop-carried dependence or BRAM port con-
straint. The computation load vectors and trip count of each loop
are specified in the table.

In Sec. 3, we assume that loop depths and the area of non-shareable
component candidates will not change among different implemen-
tations. Table 6 is used to demonstrate the accuracy of the perfor-
mance and area model against HLS results. From the table, we can
observe that among the FPGA area tuple, DSP can always be pre-
cisely estimated. The error rate of lookup table (LUT) estimation
is under 5%, while the error rate of flip-flop (FF) estimation can
range up to 13.79%. The most possible reason is that pipeline reg-
isters will change significantly with loop IIs. However, in all the
implementations of Segmentation and all other benchmarks used
in the paper, FF will never be the scarcest resource. Therefore, as
shown in the table, we can always model the number of replicas
D with the proposed area model. The performance model is also
very accurate, with a maximum error rate of 0.001% compared to
RTL-level simulation by HLS tools.

Table 7 illustrates all the Pareto-optimal implementations of Seg-
mentation with different IIs and resource sharing vectors. Perfor-
mance numbers are normalized against the performance of the first

Table 6: Error Analysis of Area and Performance Model

# LUT (%) FF (%) DSP (%) Cycle (%) Dup (%)
1 0 0 0 0 0
2 1.54 5.97 0 0 0
3 0.68 7.52 0 0 0
4 1.14 9.09 0 0.00042 0
5 1.14 7.78 0 0 0
6 2.27 6 0 0.00097 0
7 1.38 7.6 0 0.00089 0
8 1.87 9.26 0 0.00118 0
9 0.47 8.61 0 0.00055 0

10 4.02 8.53 0 0 0
11 2.69 10.3 0 0.00016 0
12 2.24 9.6 0 0.00048 0
13 0.41 13.79 0 0.00019 0
14 0.97 13.61 0 0 0

implementation. In the first implementation, single-replica perfor-
mance is maximized by minimizing the IIs of all loops. However,
with the largest single-replica, the smallest number of replicas will
be generated. With the increase of loop IIs, less shareable com-
ponent candidates will be allocated. Area consumption of a single
replica is reduced at the cost of worse single-replica performance.
Among all 14 implementations, implementation 4 achieves the op-
timal tradeoff between performance and area consumption. It has
the highest performance/area ratio and the largest throughput under
the area constraint of the FPGA device after module duplication.

6.2 Benchmark Description
In addition to DWT and Segmentation, we use six other real-

world computation kernels and applications to evaluate the pro-
posed throughput optimization algorithm. FDTD, MM and Syrk
are selected from PolyBench/C 3.2[22]. Deno, IMin and EMin are
extracted from X-Ray CT image pipeline algorithms. A descrip-
tion of each benchmark can be found in Table 8. The number of
loops (N ), types of shareable component candidates (M ) and to-
tal number of shareable component candidates in the entire code
(
∑
sj,k) of each benchmark are enumerated in the table. Some

loops in IMin and FDTD can be executed in parallel. Loops in
other benchmarks must be executed in sequence due to inter-loop
dependence. Double precision floating point is used as the default
data type in computations, as in the original code. Due to the rela-
tive small-size of the benchmarks, branch-and-bound solutions are
used in the experiments.

6.3 Experimental Results
Table 9 compiles the experimental results for all benchmarks. In

the Baseline implementation, the smallest loop IIs are specified
to achieve best performance for a single replica, then the replica
is duplicated within the FPGA device capacity. We then enumer-
ate all possible implementations with different IIs and allocated
shareable component candidates to find the optimal solution with
the best overall performance under the area constraint of the FPGA
device. HLS directives "#pragma HLS allocation instances =
ComponentName limit=xx operation/ function" and "#pragma
HLS pipeline II=yy" are inserted to the program to guide Vivado
HLS tool to achieve optimal resource allocation and pipeline II
generated by our proposed algorithm. Then Xilinx Vivado De-
sign Suite is used to synthesize the transformed code to bitstream
and perform RTL-level simulation to generate all the performance



Table 7: Design Space Exploration for Image Segmentation

No. Operators Initiation Intervals Area Cycles #(Replica) Performance± * /
√
x 1

x
> L1 L2 L3 L4 L5 LUTs FFs DSPs

1 5 7 1 1 1 1 1 2 1 2 5 16143 12801 106 348783 11 1
2 4 4 1 1 1 1 1 2 2 2 5 14983 11012 70 381551 18 1.496
3 4 3 1 1 1 1 1 2 3 2 5 14649 10640 59 414319 21 1.607
4 4 2 1 1 1 1 1 2 4 3 5 14512 10277 48 476876 25 1.662
5 4 1 1 1 1 1 1 3 7 6 5 14307 10189 37 694346 25 1.142
6 3 4 1 1 1 1 1 2 2 2 6 14296 10589 67 414315 18 1.378
7 3 3 1 1 1 1 1 2 3 2 6 13962 10218 56 447083 22 1.56
8 3 2 1 1 1 1 1 2 4 3 6 13825 9854 45 509640 26 1.618
9 3 1 1 1 1 1 1 3 7 6 6 13300 9702 34 727110 27 1.177

10 2 3 1 1 1 1 2 3 3 2 8 13532 9721 53 575182 23 1.268
11 2 2 1 1 1 1 2 3 4 3 8 13139 9357 42 637742 27 1.342
12 2 1 1 1 1 1 2 6 7 3 8 12870 9208 31 825422 28 1.076
13 1 2 1 1 1 1 3 6 5 3 16 11955 8679 39 1054796 30 0.902
14 1 1 1 1 1 1 3 6 7 6 16 11688 8491 28 1209703 31 0.813

Table 8: Benchmark Description

Name Description N M
∑
sj,k Dep

Segmentation Image Segmentation 5 6 61 Sequential
Denoise Rician Noise Removal 2 6 56 Sequential

DWT Discrete Wavelet Transform 4 2 10 Sequential
Image Minimization X-Ray Image Minimization 10 2 47 Parallel
Edge Minimization X-Ray Edge Minimization 3 4 37 Sequential

FDTD-2D Finite Diff. Time Domain 4 2 11 Parallel
Matrix Multiplication Matrix Multiplication 3 2 6 Sequential

Syrk Symmetric Rank-k Operations 2 2 6 Sequential

numbers. The entire experiment was implemented by a push-button
flow shown in Figure 5.

Figure 5: Experimental Flow

Compared to the base implementation, the speedup of optimal
solution found by the proposed design space exploration algorithm
ranges from 1X (Syrk) to 1.85X (IMin), with an average of 1.31X
and the geometric mean as 1.28X, shown in Fig. 6. In Syrk, the
traditional optimize-and-duplicate approach already achieves the
optimal solution in terms of performance-area density.

The loop initiation intervals of the baseline and optimal imple-
mentations are shown in Table 10. From the table, we can see that
except for Syrk, in all other benchmark designs, higher IIs in some
loops will better overall throughput after exploiting coarse-grained
performance through duplication. Considering the moderate scale
of the benchmark applications, branch-and-bound solution is se-

Seg
Deno

DWT
IM

in
EMin

FDTD
MM Syrk Avg

GMean

1

1.2

1.4

1.6

1.8

Figure 6: Performance Speedup

lected in the experiment. The runtime of the entire optimization
algorithm is from 12.9s to 103s, as shown in Table 10.

For some benchmarks used in this paper, the outer-most loop is
dependence-free. Another approach is to implement the designs
with pipelined outer-most loop. The proposed inter-module shar-
ing approach may not be beneficial when the task will be executed
repeated in a pipeline fashion (which may not be always possible).
For the DWT case where piplining outer-most loop is possible, the
pipelined approach will outputform the proposed resource-sharing
approach. This could be an interesting future work.



Table 9: Experimental Results

Benchmark Implemtation LUT FF DSP CP(ns) Cycles #(Replicas) Performance

Seg
Baseline 16143 12801 106 8.8 348783 11 1

Optimized 14512 10277 48 8.821 476876 25 1.66
Comparison(%) -10.1 -19.7 -54.7 0.2 36.7 127.3 66.2

Deno
Baseline 15330 11590 85 8.171 28849 14 1

Optimized 12516 9514 54 8.194 37047 23 1.28
Comparison(%) -18.4 -17.9 -36.5 0.3 28.4 64.3 27.9

DWT
Baseline 2855 1985 28 8.253 590337 45 1

Optimized 2716 1830 17 8.091 851457 74 1.14
Comparison(%) -4.9 -7.8 -39.3 -2 44.2 64.4 14

IMin
Baseline 8969 6691 56 8.701 38196620 22 1

Optimized 5437 4387 14 8.562 61789701 66 1.85
Comparison(%) -39.4 -34.4 -75 -1.6 61.8 200 85.5

EMin
Baseline 10496 8112 42 8.27 64882073 30 1

Optimized 9452 7366 28 8.183 70780403 38 1.16
Comparison(%) -9.9 -9.2 -33.3 -1.1 9.1 26.7 16.1

FDTD
Baseline 4451 2737 23 8.125 7485620 54 1

Optimized 2907 1852 17 8.214 9975630 74 1.03
Comparison(%) -34.7 -32.3 -26.1 1.1 33.3 37 2.8

MM
Baseline 2276 1744 25 8.078 67620 50 1

Optimized 2097 1471 14 7.982 100387 90 1.21
Comparison(%) -7.9 -15.7 -44 -1.2 48.5 80 21.2

Syrk
Baseline 1874 1553 25 8.171 2113560 50 1

Optimized 1874 1553 25 8.171 2113560 50 1
Comparison(%) 0 0 0 0 0 0 0

Table 10: Baseline and Optimal Loop IIs

Bmk . Baseline Optimal Runtime
Seg 〈1, 2, 1, 2, 5〉 〈1, 2, 4, 3, 5〉 103s

Deno 〈4, 3〉 〈4, 5〉 15.5s
DWT 〈1, 1, 1, 1〉 〈1, 1, 2, 2〉 12.9s

IMin 〈3, 1, 5, 1, 1, 〈12, 1, 5, 1, 1 23.7s
5, 5, 5, 1, 1, 〉 5, 5, 5, 1, 1, 〉

EMin 〈5, 5, 1〉 〈6, 5, 1〉 14.0s
FDTD 〈1, 1, 1, 1〉 〈1, 1, 1, 2〉 16.4s
MM 〈1, 1, 1, 1〉 〈1, 2, 1, 1〉 16.7s
Syrk 〈1, 1〉 〈1, 1〉 14.5s

7. CONCLUSIONS
In this paper, we formulate an area-aware throughput optimiza-

tion problem by simultaneously addressing the concept of loop
pipelining, module selection, duplication and resource sharing within
a unified framework. We propose some methods to solve the prob-
lem efficiently. Experimental results show that an average of 31%
speedup can be achieved compared to previous results.
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