
CMOST: A System-Level FPGA Compilation Framework
Peng Zhang1*, Muhuan Huang1,2*, Bingjun Xiao2, Hui Huang2, Jason Cong2

1 Falcon Computing Solutions, Los Angeles, USA
2 Computer Science Department, University of California, Los Angeles, USA

pengzhang@falcon-computing.com, {mhhuang, xiao, huihuang, cong}@cs.ucla.edu

ABSTRACT
Programming difficulty is a key challenge to the adoption of FPGAs
as a general high-performance computing platform. In this paper we
present CMOST, an open-source automated compilation flow that
maps C-code to FPGAs for acceleration. CMOST establishes a
unified framework for the integration of various system-level
optimizations and for different hardware platforms. We also present
several novel techniques on integrating optimizations in CMOST,
including task-level dependence analysis, block-based data
streaming, and automated SDF generation. Experimental results
show that automatically generated FPGA accelerators can achieve
over 8x speedup and 120x energy gain on average compared to the
multi-core CPU results from similar input C programs. CMOST
results are comparable to those obtained after extensive manual
source-code transformations followed by high-level synthesis.

Categories and Subject Descriptors
B.5.2 [Hardware]: Design Aids – automatic synthesis

General Terms
Algorithms, Design, Experimentation

Keywords
System-Level Optimization, High-Level Synthesis, FPGA

1. INTRODUCTION
The performance improvement from traditional frequency and
multi-core scaling has significantly slowed down due to power
consumption issues. FPGAs provide the opportunity to exploit
customization and specialization for energy-efficient computing.
However, the adoption of FPGA as a computing platform is
currently limited by the design productivity issues, such as
exploration of large design space, and time-consuming and error-
prone design environment. There is an urgent need for design
automation tools to tackle these issues to enable customized
computing.

High-level synthesis (HLS) tools, such as [1], establish an
automated design path from C to RTL, and this enables the design
of FPGA hardware using a high-level programming language for
module-level designs. But there is little support for system-level
design automation, which requires many microarchitecture
considerations, e.g., proper memory and communication
architectures to connect various RTL modules, and the integration

of the hardware and software modules into the entire system.

There are several research efforts that focus on automating system
generation for FPGAs, such as BORPH [2], CoRAM [3] and LEAP
[4]. Using these platforms, designers do not need to be concerned
with the implementation details of hardware architecture, software
middleware, and HW/SW interface. In BORPH, hardware and
software modules run as communicating processes in UNIX, and
hardware design is based on Simulink where design options can be
explored at system level. CoRAM models the system as hardware
kernels, on-chip and off-chip memories and the control threads with
a set of standard APIs to access these models in a high-level
program. LEAP automatically instantiates caches on multi-layer
memory hierarchy where designers do not need to care about
tedious memory management for the hardware accelerators. A later
work [5] establishes an automated compilation flow from perfectly
nested loops in C-code into CoRAM models. These frameworks can
generate executable systems rapidly from high-level abstraction, but
do not provide automation in system-level optimizations.

State-of-the-art FPGA devices are large enough to support
applications with many hardware kernels and embedded processors.
The design complexity and design space at system level requires
FPGA design flows to follow the platform-based design paradigm
[6]. Early research on platform-based methodologies at the
electronic system-level (ESL) is summarized in [7] where
automated or manually guided design space exploration (DSE) is
the main approach to finding good designs. Recently, the response
surface model (RSM) [8] and machine learning [9] approaches are
proposed to address the scalability problem. However, these general
DSE-based flows do not have prior knowledge of the analytic
models of the microarchitecture optimizations, and hence suffer
from the scalability problem for larger applications.

Microarchitecture optimizations play a vital role in the results of
FPGA designs. For example, better data reuse with available on-
chip buffers can significantly reduce off-chip memory access [10];
loop transformations are applied to improve data locality in order to
exploit parallelism in execution or reduce memory footprint [11];
intelligent system resources allocation among different modules can
greatly improve system performance [12]. Whether to apply these
optimizations and how to balance the tradeoffs between different
optimizations become a significant challenge in automating the
compilation process. The polyhedral model provides a unified
framework for the scheduling of the repeated task instances. Some
combined optimizations have been proposed based on the
polyhedral model [10, 13, 14]. However, it is still a big challenge to
integrate and combine all these optimization options into a fully
automated implementation framework.

By tackling these challenges, our system CMOST targets at
enabling software developers to work on FPGAs with a fully
automated compilation flow—not only on push-button
implementation but also on intelligent optimizations. The
contributions of this paper are:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.

DAC '15, June 07 - 11, 2015, San Francisco, CA, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3520-1/15/06…$15.00
http://dx.doi.org/10.1145/2744769.2744807

1. The first push-button compilation flow mapping general C
programs into full system designs on different FPGA platforms.

2. A unified abstraction model for combinations of different
microarchitecture optimization schemes using customization,
mapping, scheduling and transformations.

3. Several novel techniques integrated into CMOST, including task-
level dependency analysis, block-based data streaming, and
automated SDF generation.

The rest of this paper is organized as follows: Section 2 describes
the overall structure of CMOST. Section 3 introduces a unified
model for the integration and combination of different system-level
optimization schemes. Section 4 presents several novel techniques
used in CMOST, followed by the experimental results and
conclusion in Sections 5 and 6.

Figure 1. CMOST system diagram

Figure 2. A simple example demonstrating the design flow

2. CMOST DESIGN FLOW
2.1 Overall design flow
CMOST provides a push-button design flow to generate the
executable system on FPGAs from user programs, as shown in
Figure 1. Programmers only need to mark the regions of the
program (called tasks) for acceleration by pragmas as Figure 2 (a).
Data accesses between SW and HW modules are coded directly
using array references, and arbitrary loop structures are supported
including imperfectly nested loops. The system-level information
for the tasks such as the iteration domain and data access patterns is
extracted statically and automatically as Figure 2 (b). System-level
optimizations such as data reuse and module duplication are
performed automatically based on the extracted high-level
information as Figure 2 (c). Moreover, optimization results are
encoded as parameters to instantiate the templates of the
implementation files, including the software programs executed in
host processors, and HLS C-code and RTLs for hardware modules.

2.2 Platform virtualization

At this point, CMOST adopts a bus-based architecture template
(Figure 3(a)) to abstract away details of the hardware platform and
provide portability for different platforms. The standard bus
interface of HW cores makes it easy to integrate with the platform
peripherals from different vendors. The template supports two
acceleration scenarios (i) servers are connected to FPGA via PCIe
and (ii) processor(s) are embedded in FPGA. In the automation flow

Figure 3. CMOST platform virtualization

(Figure 3(b)), the platform-dependent and platform-independent
parts are separated to maximize the design reusability between
platforms. CMOST generates the implementation files in the
OpenCL format with standard HW/SW interfaces. The OpenCL
host program is totally platform independent. OpenCL APIs
invoked in the host program are implemented by the driver
wrappers in CMOST where the effort to support different platform
drivers is minimized.

3. ABSTRACTION FRAMEWORK
FPGA provides the opportunities to exploit high performance and
energy efficiency by customization and specialization of the
accelerators. The large design space results in design complexity in
all aspects of computation, communication and storage subsystems.
In typical designs, a sequence of optimization schemes is applied for
different objectives, and the system bottleneck may switch from one
aspect to another during the process. For example, in the stencil
application shown in Figure 4, data reuse is first applied to solve the
off-chip bandwidth bottleneck by allocating local reuse buffers;
data blocking (loop tiling) reduces the reuse buffer sizes; data
prefetching overlaps communication with the computation to
increase performance of one module; then dataflow streaming
enables data-dependent modules to execute simultaneously in a
pipeline fashion; and finally, module selection and parallelization
optimize the area/performance trade-offs among multiple modules
in the streaming system. As a result, a unified modeling is required
to integrate all these steps into an automated flow, and to boost the
research on how to order/combine these steps efficiently.

Figure 4. The optimization steps for a stencil application

3.1 Task-level application model
The feasibility and profitability of system-level optimizations are
determined by system-level features of the applications. A unified
application model is required to support various optimizations. The
polyhedral model is used to represent the application as a set of
repeatedly executed statements, a set of data arrays that the
statements produce or consume, and a set of necessary constraints
on the execution order of the statements to keep the semantics of the
input program [14]. This abstract representation provides the
opportunity for the compiler to find the proper scheduling of the
statement instances for the specific optimizations instead of the
original order in the sequential program.

The traditional polyhedral model used in compiler optimizations is
at either statement level or loop level, and only applicable to static
control programs [15], which require the for-loop bounds and
access indexes to be affine. CMOST proposes a task-level
polyhedral model, where the basic unit is a task that may contain a
segment of code in the program. For example, in Figure 5 task t0
contains a for-loop (n) inside, which is not modeled in the iteration

domain; and the access function does not map iterators to a data
element, but to a set of data elements accessed in the task body. The
benefits of the proposed model are twofold: 1) the complexity of the
model becomes flexible according to the granularity of the tasks;
and 2) the program inside the task is not required to be affine, as in
the traditional polyhedral model. Only the loops within the graph
scope but outside the task scope need to be affine, and loop
transformation are applied on them to perform task scheduling.

Figure 5. Task-level polyhedral representation example

3.2 Unified optimization model
By analyzing the similarity and differences of the optimization
schemes, we group the schemes into four basic dimensions:
Customization, Mapping, Scheduling and Transformation. With the
target Optimization in the center, we therefore arrive at CMOST as
the name for our framework. Customization models the design
spaces at application level using the parameterized source code.
Mapping and scheduling determine the spatial resource allocation
and temporal execution for each component in the application
model. Microarchitecture optimizations are represented as a set of
semantic-preserving transformations of the application model. Table
I shows how different system optimizations are projected into the
four basic dimensions.

Table I. Generalization of the microarchitecture optimizations

 Customization Mapping Scheduling Transformation

Data reuse -
 allocate SRAM

for buffer
-

create local buffer
and fetcher

Data blocking - -
be in the order

of blocks
-

Prefetching -
allocate SRAM

for buffer
overlap prefetch
w/ computation

create local buffer
and fetcher

Streaming -
 allocate SRAM

for buffer
pipeline the

different stages
-

Module
selection

module design
space

select the options
to map

- -

Parallelization -
determine # of

duplication
parallel

execution
-

Customization models the application-level design space using the
parameterized programs written by users. This is inspired by
Genesis2 [16], which used a model-based methodology where
design templates and their configurations are separated, and
exploration of the detailed module implementations can be done at
system level. While Genesis only supports only
Verilog/SystemVerilog, CMOST extends the template
representation to support C/C++, Tcl, Perl and any textual source
code. This creates a unified mechanism for separating different
design considerations in the whole design flow, such as platform-
dependent vs. independent, and application-dependent vs.
independent constraints. Another improvement over Genesis2 is the
support of describing the design space in templates, which are the
ranges of the parameters. Automated design exploration can benefit
from this because a joint exploration of architecture parameters and
task parameters can be performed. The design space of task t can be
modeled as a set of Pareto-optimal points in the design metrics
space:

 (1)
where resti, latti and thrptti are resource utilization, latency and
throughput of the i-th options of the task t, and St is the number of
design options for task t.

Mapping determines the resource allocation of the tasks and data in
the application model. Binary selection variables bti indicate
whether a task t is implemented as its design option i.

where res_st is the resource utilization of the selected option for task
t. Integer duplication factor dt indicates the number of parallel
hardware units allocated for task t.

To model data reuse and streaming buffers, binary variables raj and
saj indicate whether the reuse or prefetching scheme is applied to the
access reference j of array a.

The constraints for mapping are the total resource for each type, e.g.
LUT, FF, DSP, SRAM and BW (for off-chip bandwidth) :1

Scheduling determines the execution start time of each task instance.
In the polyhedral model, scheduling functions are used to specify
the execution order via an affine mapping from the task iteration
domain to the space of order vectors. To simplify the discussion, we
only address 1-D order/scheduling vectors.

(7)
where x

 is the task instance index, and ()x  is the order vector.

However, the polyhedral model is originally used for loop
transformation where only the relative order of the statement
instances is of interest. Task scheduling in FPGA optimizations
needs an extended model to support the execution of the pipelined
and parallel task instances. In CMOST, data dependency constraints,
which need to be preserved for the program semantics, consider
execution latency of the task instances.

(8)
where

s is the start time vector of task s in time domain, and

[] []s x t y
  means task instance []t y

 is dependent on []s x
 . FPGA

hardware modules are typically running in a pipelined way, where
the initiation interval is the reciprocal of the throughput.

 (9)

Duplicated hardware units of the same task allow multiple task
instances to start simultaneously:

 (10)

For task-level pipelining, additional constraints for the streaming
buffers are required (in the case of double buffering):

(11)

where
tD is the iteration domain of task t, and s t means there is

a stream from task s to task t. Finally system performance can be
expressed as:

where t is the output task we use to measure performance. Figure 6
provides some examples of the scheduling modeling.

Figure 6. Examples of the scheduling modeling

1 We assume all modules continue running, so the total BW is the sum of the

module BWs. More complex cases are beyond the scope of this paper.

ti ti ti{(, ,) | 0 i }t tMetrics res lat thrpt S  

 (2) and 1 (3)t ti ti ti
i i

res_s res b b   

; ; (4)t t t t t t t tres_d res_s d lat_d lat_s thrpt_d thrpt_s d    

[] ; ...; [] (6)t t
t t

res_d lut total_lut res_d BW total_BW  

[] _ ; [] (1) (5)aj aj aj aj aj ajres_r sram r sram r res_r BW r BW    

() Tx x c   
  

() (), [] []s s tx lat y s x t y    
   

() 1 (), , t t t tx thrpt y t x d y     
   

() (T) /t tx x c d   
  

 (2) () () ()

 ,
s t t t s s s t

t

D D x lat x x lat x

s t x D

          
  

   


max(()), 1 max(() (1)) (12)t t t
x x

sys_lat x sys_thrpt x x      
  

Transformation changes the application model into another
semantic-equivalent form so that better mapping and scheduling
results can be achieved. With this abstraction, a common scheduling
and mapping engine can be separated from the microarchitecture
optimizations. In Figure 7, the transformation for data reuse and
data prefetching can be unified by adding a buffer data0_t and a
task fetcher into the application model. Design options, such as
whether to apply reuse, prefetching or the combination of reuse and
prefetching, are explored transparently in the mapping and
scheduling steps in a general way.

Figure 7. Unification of optimizations by transformation

3.3 Design space exploration
Under CMOST optimization modeling, the whole design space can
be explored in four increasing scopes: resource-time space,
semantics-reserving transformations, application alternatives coded
as a template specification, and, finally, user-interactive space for
different input specifications (as shown in Figure 8). The inner
design space is relatively easier to model and explore automatically
than the outer spaces. The resource-time space is analytically
modeled where optimal designs can be found by solving
mathematical programming problems. Many useful transformations
are related to the specific characteristics of the hardware platforms,
and they may need to be explored iteratively because of the
algorithm complexity and inaccuracy in modeling the platform
details. But efficient exploration schemes can be developed by
considering the specific features of the transformations. With the
ranges of the parameters pre-defined in the user source code, the
application template space can be explored automatically. Given a
pre-defined system target, the exploration is done from inner
iteration to outer iteration. If inner iteration fails to find a feasible
solution, another round of the outer loop iteration will be triggered
until the design objectives are satisfied.

Figure 8. Multi-layer design space exploration

4. DESIGN FLOW INTEGRATION
The CMOST framework also proposes a number of novel
techniques that are necessary for integrating the system-level
optimizations into a fully automated design flow. We highlight a
few in this section.

4.1 Task-level dependence analysis
In the task-level polyhedral model, the access function is extended
to support mapping from a task instance to a set of data elements,
instead of to one data element in the traditional polyhedral model.

This requires the underlying dependence analysis tool be extended
as well. The dependency is calculated between data regions instead
of data elements. The work in [17] proposed a formulation to
calculate the reusable data regions by intersecting the polytopes of
the data elements that successive loop iterations access. But the
reuse across two loop iterations is not considered in the formulation.
Thus, it is necessary to design a general dependence distance
calculation pass for the task-level polyhedral model representation
to integrate data reuse into the system-level automation.

Access functions in the task-level polyhedral model can be
expressed as where y

 is the

instance index of task t,
t
 is the iterator variable inside the task

body for the array reference, and f is the a linear combination of
components in y

 and
t
 .

We define two task instances as dependent if any data element
produced by one instance is used by the other instance. A
dependency polytope can be used to represent the set of index pairs
of the dependent task instances.

(13)
This appears to be different from the basic polyhedral model [14] in
terms of the mathematic form, but if we substitute the access
functions in Equation (13), Pst is actually in a perfectly linear form
in terms of iterator variables.

Hence all the general polyhedral analysis methods can be applied in
this task-level model. For example, the reuse buffer size is
determined by the reuse distance. Reuse distance is the difference of
task instance indexes between the source and reused access
references, which can be conservatively calculated as

(15)
where lexmax is calculating the lexicographically maximum vector.
This optimization problem can be solved by integer linear
programming. The reuse distance we obtain can be used to calculate
the reuse buffer size by the approach in [10].

4.2 Block-based data streaming
In the task level streaming, tasks in different pipeline stages
communicate via FIFO so that the synchronization between the
tasks is minimized, and read and write accesses can be performed in
parallel. Automated flows such as [18] have been established to
generate the FIFO-based streaming from high-level programs.
However, limited by the channel type, the data communicated
between the streaming stages are required to be in the same order at
producer and consumer sides. So when the orders do not match,
additional memory is needed at either side to perform the reordering
operation.

We propose an extension of the traditional streaming framework by
introducing block FIFOs. A block FIFO consists of several memory
blocks where data access within one block can be accessed in
random address, and the order of the blocks accessed by both sides
should be the same. For example, in the DCT case in Figure 9(a),
data are produced in row order in the first stage and consumed in
column order in the second stage. Figure 9(d) shows the overall
structure of the block FIFO, which is similar to a traditional FIFO
where each data element in the FIFO is replaced by a memory block
in block FIFOs. Control signals like read, write, empty and full are
all at block level, and they are used to switch the FIFO pointers of
blocks at two sides in a cyclic way like basic FIFO. Data accesses
are only allowed within the block that FIFO pointers are pointing to,
and address signals are used for random access. This locally-
random-globally-ordered mechanism of block FIFOs fits well in the
CMOST’s task-centric application model where a block of data is
accessed by each task instance.

() { (,) | , }t t t t tF y f y y D D   
   

{(,) | () () , , }st s t s tP x y F x F y x D y D     
     

{(,) | (,) (,), , , , } (14)st s t s tP x y f x f y x D D y D D         
       

lexmax() s.t. (,) str y x x y P  
    

Figure 9. Example code and hardware structure for block FIFO

To fully automatically generate the block FIFO-based design, the
size of the buffer and the address mapping should be determined.
We first merge the references to be mapped to the block FIFO into
one union data set. Then the address mapping problem can be
generalized as: Given a parameterized set
representing the virtual address in the program, find a one-to-one
mapping from this set to a non-negative integer set representing the
block FIFO addresses. The maximum value in the new set should be
minimized to save memory space. Research has been conducted on
address mapping for memory size reduction [19], which is quite
complex. We propose a novel and simple method to generate the
addresses for block FIFO.

For example, let the input set be
This set does not start from zero, so we first subtract a constant from
the expression and get 256i+8j. The points are scattered in the
integer space, so we can divide the expression by the GCD of all the
coefficients and get 32i+j. In addition, since the variable j has a
small range of 8, the coefficient 32 can be reduced to 8 where a one-
to-one mapping is still satisfied. Then the mapped local address in
block FIFO is 8i+j. As a result, the original scattered points are
mapped into a dense range from 0 to 63.

The detailed algorithm for address mapping can be summarized as
Algorithm 1. The buffer size is also obtained in the algorithm.

Algorithm 1 Address mapping for block FIFO
 1: input C; // list of the coefficients for the iterators 
 2: input R; // list of the ranges of the iterators 
 3: integer p; // current size for the mapped set
 4: sort C and R according the coefficient values (smaller first)
 5: divide all the values in C by the GCD of them; set p as 1
 6: for all the coefficients in C (indexed by i) do
 7: if C[i] > p, C[i] = p and p = C[i]×R[i]; // coefficient reduced
 8: else, p += C[i]×R[i]; // already dense
 9: end for
10: Insert the constant into C to shift the staring address to zero
11: return the updated C for local address and p for buffer size

4.3 Automated SDF generation
System optimizations for streaming applications have been well
studied in recent decades. To leverage this work, the current
CMOST framework adopts the method in [12] for the scheduling
and mapping optimizations. However, previous works rarely
explored the issue of creating the synchronous dataflow (SDF)
model from a sequential C program. Automated SDF generation is
developed in CMOST to establish a fully automated design flow.

As shown in Figure 10(b), the SDF graph contains computation
actors and communication edges. Data streams between actors via
FIFOs in the edges. The numbers annotated on both sides of the
edge represent the data rates, i.e., the number of units produced or
consumed by each firing of the actor. If there are not enough data
units on the input edge, the actor will not be fired.

Figure 10. MPEG example code and corresponding SDF

To generate a SDF graph from a C program, a task-level polyhedral
model is first established. The challenge in generating the SDF
graph is to ensure that the communication is in order between
producers and consumers. By adopting block-based data streaming
presented in the preceding subsection, we do not require each data
element to be in order, but rather that each block be in order. The
granularity of the block can be enlarged by merging multiple task
instances into one block. So the main problem becomes determining
a proper granularity of the actors that contain a group of task
instances. If the actor is too fine-grained, the in-order requirement
may not be met; and inversely, redundant memory resource will be
consumed. We consider the granularity in terms of loop levels in the
task iteration domain.

Theorem 1. Given the dependency polytope two dependent
references have in-order accesses at a common loop level l if

(16)

where is a constant l-dimensional vector, and is the
first l dimensions of the task instance index x

 .

We omit the proof of Theorem 1 due to page limitations. Using
Theorem 1, we can test and find the maximum loop level for each
pair of dependent references. A task may connect to the others with
multiple accesses, so the minimum in-order loop level for all the
accesses of the task is the granularity for the actor. If no loop level
can satisfy the condition (16), we consider that this edge cannot be
streamed and the SDF generation returns with failure. Note that 1)
Theorem 1 does not give a necessary condition for the in-order test,
so the result is conservative which results in a larger buffer; 2) loop
transformation can be applied to enforce the access order. The
details of these two issues are not addressed here due to page
limitation.

5. EXPERIMENTAL RESULTS
We select a set of real applications as our test bench: Medical
Imaging contains several 3-D stencils; Black Scholes has a deep
computation pipeline; MPEG is a typical streaming application;
NAMD performs computation intensive molecular-level simulation;
and Smith Waterman performs DNA sequence alignment using
dynamic programming. We use the OpenMP implementation on a
state-of-the-art 6-core CPU (Intel Xeon E5-2640@2.5GHz) as the
reference. Xilinx VC707 contains a Xilinx Virtex-7 chip and
Convey HC-1ex contains four Xilinx Virtex-6 FPGAs. Table II
shows the comparison of the execution time results on these
platforms. Both CMOST and the manual designs use Xilinx
Vivado_HLS and Vivado as the implementation tool.

Table II. Comparison of implementation results1

Design
CPU

(OpenMP)
HC1-ex

(CMOST)
VC707

(CMOST)
VC707
(manual)

Speed-
up

Energy
Gain

Medical Imaging 14s 3.5s 7.9s 7.9s 1.7x 26x
Black Scholes 0.68s 0.06s 0.63s 0.63s 1.1x 17x

MPEG 2.2s - 0.15s 0.14s 15x 220x
NAMD 4.8s 0.37 0.62s 0.25s 8x 120x

Smith Waterman 1.73s - 0.09s 0.06s 18x 270x
1

The speedup and energy comparison is between VC707 (CMOST) and CPU.

The results in Table II show that CMOST can obtain over 8x
speedup for the last three cases. Although the speedup on first two

{ (,) | }tf y D  
 

{256 8 5 | 0 7,0 7}.i j i j     

0..(1) 0..(1) 0..(1) 0..(1), (,) , =l st l l le x y P y x e      
     

0..(1)le 


0..(1)lx 


,stP

designs is relative small, the results are comparable to those
obtained with extensive manual source-code transformations. For
the last two cases, dynamic scheduling is applied manually, which is
not supported in the current flow. Overall, we can achieve over 8x
speedup and 120x energy gain on average.

Table III. Comparison of programming efforts

Design
of tasks
in CMOST

original
code line

OpenMP
changes

CMOST
changes

Manual
changes

Medical Imaging 6 700+ 6 28 800+
MPEG 5 6000+ 10 35 1500+

Table III shows that CMOST achieves the speedup with a small
number of source code changes (mainly for adding some pragmas to
mark the hardware task regions). Compared to the manual HLS
design, a great amount of effort is saved. In addition, once a design
is ready for one FPGA platform, only one line of change in the
directive file is needed for platform switching and working
frequency change.

Figure 11. Impacts of optimizations on different applications

Figure 11 shows the detailed impacts of each optimization.
Memory-bounded applications like medical imaging and Black
Scholes benefit more from off-chip memory optimizations, while
streaming applications like MPEG rely on task-level pipelining.
Most of the cases benefit greatly from module duplication except
that medical imaging has its bottleneck in off-chip memory
accessing. Kernel frequency increase helps in all the designs, but
only MPEG and NAMD can gain near-linear scaling, because these
two are typical computation-bounded applications.

6. CONCLUSION
We present an open-source C-to-FPGA automation flow, which can
achieve over 8x speedup and 120x energy gain on average
compared to multi-core CPU results using the similar input
program. A unified optimization framework is proposed for the
combination of various microarchitecture optimizations. Several
novel techniques are introduced for the integration of the fully
automated design flow. Further work will include 1) automating the
task marking process to further minimize the design efforts and
enable the optimization on task partitioning; 2) improving the
design results by introducing more advanced microarchitecture
optimizations such as dynamic scheduling; and 3) providing
automation on system evaluation and debugging. CMOST is
available for download at http://vast.cs.ucla.edu/software/cmost-
system-level-fpga-synthesis.

7. ACKNOWLEDGEMENTS
The authors would like to thank Young-Kyu Choi, Hassan
Kianinejad, Jie Lei, Peng Li, Jie Wang, and Yuxin Wang for the
efforts in CMOST development and design case study. This
research is partially supported by the NSF Expeditions in
Computing Award CCF-0926127.

8. REFERENCES
[1] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z.

Zhang, “High-level synthesis for FPGA: From prototyping to
deployment,” IEEE Trans. on CAD, vol. 30, no. 4, 2011.

[2] H. K. So and R. Brodersen, "A unified hardware/software
runtime environment for FPGA-based reconfigurable computers
using BORPH," ACM TECS. Jan. 2008, pp. 28.

[3] E. S. Chung, J. C. Hoe, and K. Mai, "CoRAM: an in-fabric
memory architecture for FPGA-based computing," the 19th
ACM/SIGDA intl. symp. FPGA. New York, 97-106.

[4] M. Adler, K. E. Fleming, A. Parashar, etc, "Leap scratchpads:
automatic memory and cache management for reconfigurable
logic," the 19th ACM/SIGDA intl. symp. FPGA, New York,
NY, USA, 25-28.

[5] G. Weisz and J. C. Hoe, "C-to-CoRAM: compiling perfect loop
nests to the portable CoRAM abstraction, " the 19th
ACM/SIGDA intl. symp. FPGA, 2013, pp. 211-230.

[6] K. Keutzer, A.R. Newton, J.M. Rabaey, etc., "System-level
design: orthogonalization of concerns and platform-based
design," IEEE TCAD., vol.19, no.12, pp.1523,1543, Dec 2000

[7] A. Gerstlauer, C. Haubelt, A. D. Pimentel,T. P. Stefanov, D. D.
Gajski, and J. Teich, "Electronic system-level synthesis
methodologies," IEEE TCAD, vol. 28, no. 10, pp. 1517–1530.

[8] S. Xydis, G. Palermo, V. Zaccaria, etc., "SPIRIT: Spectral-
aware Pareto Iterative Refinement Optimization for supervised
high-level synthesis," IEEE TCAD, vol. 34, no.1, pp.155, 2015

[9] H.-Y. Liu, and L.P. Carloni, "On learning-based methods for
design-space exploration with High-Level Synthesis,"
ACM/EDAC/IEEE DAC, 2013, pp.1,7, May 29, 2013

[10] J. Cong, P. Zhang, and Y. Zou, "Optimizing memory hierarchy
allocation with loop transformations for high-level synthesis,"
ACM/EDAC/IEEE DAC, 2012, pp.1229,1234, 3-7 June 2012

[11] P. Panda, F. Catthoor, etc., "Data and Memory Optimizations
for Embedded Systems," ACM TODAES, 6(2):142–206,2001.

[12] J. Cong, M. Huang, B. Liu, P. Zhang, and Y. Zou, "Combining
module selection and replication for throughput-driven
streaming programs," ACM/EDAC/IEEE DATE, 2012,
pp.1018,1023, 12-16 March 2012

[13] Q. Liu, G.A. Constantinides, K. Masselos, etc., "Combining
data reuse with data-level parallelization for FPGA-targeted
hardware compilation: a geometric programming framework,"
IEEE TCAD, vol.28, no.3, pp.305-315, 2009.

[14] W. Zuo, Y. Liang, P. Li, etc., "Improving high level synthesis
optimization opportunity through polyhedral transformations, "
the 19th ACM/SIGDA intl. symp. FPGA, 2013, New York,
NY, USA, 9-18.

[15] C. Bastoul, "Code generation in the polyhedral model is easier
than you think," the 13th International Conference on Parallel
Architecture and Compilation Techniques, PACT 2014, vol.,
no., pp.7,16, 29 Sept.-3 Oct. 2004

[16] O. Shacham, S. Galal, S. Sankaranarayanan, etc., "Avoiding
game over: Bringing design to the next level," Design
Automation Conference (DAC), 2012 49th ACM/EDAC/IEEE
, vol., no., pp.623,629, 3-7 June 2012

[17] L.-N. Pouchet, P. Zhang, P. Sadayappan, etc., "Polyhedral-
based data reuse optimization for configurable computing," the
ACM/SIGDA international symposium on FPGA, 2013, ACM,
New York, NY, USA, 29-38.

[18] Sx Verdoolaege, Hx Nikolov, and Tx Stefanov, "pn: a tool for
improved derivation of process networks." EURASIP J.
Embedded Syst. 2007, 1 (January 2007), 19-19.

[19] A. Darte, R. Schreiber, and G. Villard, "Lattice-based memory
allocation," Computers, IEEE Transactions on , vol.54, no.10,
pp.1242,1257, Oct. 2005

