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ABSTRACT 
Programming difficulty is a key challenge to the adoption of FPGAs 
as a general high-performance computing platform. In this paper we 
present CMOST, an open-source automated compilation flow that 
maps C-code to FPGAs for acceleration. CMOST establishes a 
unified framework for the integration of various system-level 
optimizations and for different hardware platforms. We also present 
several novel techniques on integrating optimizations in CMOST, 
including task-level dependence analysis, block-based data 
streaming, and automated SDF generation. Experimental results 
show that automatically generated FPGA accelerators can achieve 
over 8x speedup and 120x energy gain on average compared to the 
multi-core CPU results from similar input C programs. CMOST 
results are comparable to those obtained after extensive manual 
source-code transformations followed by high-level synthesis.  

Categories and Subject Descriptors 
B.5.2 [Hardware]: Design Aids – automatic synthesis 

General Terms 
Algorithms, Design, Experimentation 

Keywords 
System-Level Optimization, High-Level Synthesis, FPGA 

1. INTRODUCTION 
The performance improvement from traditional frequency and 
multi-core scaling has significantly slowed down due to power 
consumption issues. FPGAs provide the opportunity to exploit 
customization and specialization for energy-efficient computing. 
However, the adoption of FPGA as a computing platform is 
currently limited by the design productivity issues, such as 
exploration of large design space, and time-consuming and error-
prone design environment. There is an urgent need for design 
automation tools to tackle these issues to enable customized 
computing.  

High-level synthesis (HLS) tools, such as [1], establish an 
automated design path from C to RTL, and this enables the design 
of FPGA hardware using a high-level programming language for 
module-level designs. But there is little support for system-level 
design automation, which requires many microarchitecture 
considerations, e.g., proper memory and communication 
architectures to connect various RTL modules, and the integration 

of the hardware and software modules into the entire system. 

There are several research efforts that focus on automating system 
generation for FPGAs, such as BORPH [2], CoRAM [3] and LEAP 
[4]. Using these platforms, designers do not need to be concerned 
with the implementation details of hardware architecture, software 
middleware, and HW/SW interface. In BORPH, hardware and 
software modules run as communicating processes in UNIX, and 
hardware design is based on Simulink where design options can be 
explored at system level. CoRAM models the system as hardware 
kernels, on-chip and off-chip memories and the control threads with 
a set of standard APIs to access these models in a high-level 
program. LEAP automatically instantiates caches on multi-layer 
memory hierarchy where designers do not need to care about 
tedious memory management for the hardware accelerators. A later 
work [5] establishes an automated compilation flow from perfectly 
nested loops in C-code into CoRAM models. These frameworks can 
generate executable systems rapidly from high-level abstraction, but 
do not provide automation in system-level optimizations. 

State-of-the-art FPGA devices are large enough to support 
applications with many hardware kernels and embedded processors. 
The design complexity and design space at system level requires 
FPGA design flows to follow the platform-based design paradigm 
[6]. Early research on platform-based methodologies at the 
electronic system-level (ESL) is summarized in [7] where 
automated or manually guided design space exploration (DSE) is 
the main approach to finding good designs. Recently, the response 
surface model (RSM) [8] and machine learning [9] approaches are 
proposed to address the scalability problem. However, these general 
DSE-based flows do not have prior knowledge of the analytic 
models of the microarchitecture optimizations, and hence suffer 
from the scalability problem for larger applications. 

Microarchitecture optimizations play a vital role in the results of 
FPGA designs. For example, better data reuse with available on-
chip buffers can significantly reduce off-chip memory access [10]; 
loop transformations are applied to improve data locality in order to 
exploit parallelism in execution or reduce memory footprint [11]; 
intelligent system resources allocation among different modules can 
greatly improve system performance [12]. Whether to apply these 
optimizations and how to balance the tradeoffs between different 
optimizations become a significant challenge in automating the 
compilation process. The polyhedral model provides a unified 
framework for the scheduling of the repeated task instances. Some 
combined optimizations have been proposed based on the 
polyhedral model [10, 13, 14]. However, it is still a big challenge to 
integrate and combine all these optimization options into a fully 
automated implementation framework. 

By tackling these challenges, our system CMOST targets at 
enabling software developers to work on FPGAs with a fully 
automated compilation flow—not only on push-button 
implementation but also on intelligent optimizations. The 
contributions of this paper are: 
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1. The first push-button compilation flow mapping general C 
programs into full system designs on different FPGA platforms. 

2. A unified abstraction model for combinations of different 
microarchitecture optimization schemes using customization, 
mapping, scheduling and transformations. 

3. Several novel techniques integrated into CMOST, including task-
level dependency analysis, block-based data streaming, and 
automated SDF generation. 

The rest of this paper is organized as follows: Section 2 describes 
the overall structure of CMOST. Section 3 introduces a unified 
model for the integration and combination of different system-level 
optimization schemes.  Section 4 presents several novel techniques 
used in CMOST, followed by the experimental results and 
conclusion in Sections 5 and 6.  

 
Figure 1. CMOST system diagram 

 
Figure 2. A simple example demonstrating the design flow 

2. CMOST DESIGN FLOW 
2.1 Overall design flow 
CMOST provides a push-button design flow to generate the 
executable system on FPGAs from user programs, as shown in 
Figure 1. Programmers only need to mark the regions of the 
program (called tasks) for acceleration by pragmas as Figure 2 (a). 
Data accesses between SW and HW modules are coded directly 
using array references, and arbitrary loop structures are supported 
including imperfectly nested loops. The system-level information 
for the tasks such as the iteration domain and data access patterns is 
extracted statically and automatically as Figure 2 (b). System-level 
optimizations such as data reuse and module duplication are 
performed automatically based on the extracted high-level 
information as Figure 2 (c). Moreover, optimization results are 
encoded as parameters to instantiate the templates of the 
implementation files, including the software programs executed in 
host processors, and HLS C-code and RTLs for hardware modules.  

2.2 Platform virtualization 

At this point, CMOST adopts a bus-based architecture template 
(Figure 3(a)) to abstract away details of the hardware platform and 
provide portability for different platforms. The standard bus 
interface of HW cores makes it easy to integrate with the platform 
peripherals from different vendors. The template supports two 
acceleration scenarios (i) servers are connected to FPGA via PCIe 
and (ii) processor(s) are embedded in FPGA. In the automation flow  

 
Figure 3. CMOST platform virtualization 

(Figure 3(b)), the platform-dependent and platform-independent 
parts are separated to maximize the design reusability between 
platforms. CMOST generates the implementation files in the 
OpenCL format with standard HW/SW interfaces. The OpenCL 
host program is totally platform independent. OpenCL APIs 
invoked in the host program are implemented by the driver 
wrappers in CMOST where the effort to support different platform 
drivers is minimized.  

3. ABSTRACTION FRAMEWORK 
FPGA provides the opportunities to exploit high performance and 
energy efficiency by customization and specialization of the 
accelerators. The large design space results in design complexity in 
all aspects of computation, communication and storage subsystems. 
In typical designs, a sequence of optimization schemes is applied for 
different objectives, and the system bottleneck may switch from one 
aspect to another during the process. For example, in the stencil 
application shown in Figure 4, data reuse is first applied to solve the 
off-chip bandwidth bottleneck by allocating local reuse buffers; 
data blocking (loop tiling) reduces the reuse buffer sizes; data 
prefetching overlaps communication with the computation to 
increase performance of one module; then dataflow streaming 
enables data-dependent modules to execute simultaneously in a 
pipeline fashion; and finally, module selection and parallelization 
optimize the area/performance trade-offs among multiple modules 
in the streaming system. As a result, a unified modeling is required 
to integrate all these steps into an automated flow, and to boost the 
research on how to order/combine these steps efficiently.  

 
Figure 4. The optimization steps for a stencil application 

3.1 Task-level application model 
The feasibility and profitability of system-level optimizations are 
determined by system-level features of the applications. A unified 
application model is required to support various optimizations. The 
polyhedral model is used to represent the application as a set of 
repeatedly executed statements, a set of data arrays that the 
statements produce or consume, and a set of necessary constraints 
on the execution order of the statements to keep the semantics of the 
input program [14]. This abstract representation provides the 
opportunity for the compiler to find the proper scheduling of the 
statement instances for the specific optimizations instead of the 
original order in the sequential program.  

The traditional polyhedral model used in compiler optimizations is 
at either statement level or loop level, and only applicable to static 
control programs [15], which require the for-loop bounds and 
access indexes to be affine. CMOST proposes a task-level 
polyhedral model, where the basic unit is a task that may contain a 
segment of code in the program. For example, in Figure 5 task t0 
contains a for-loop (n) inside, which is not modeled in the iteration 



domain; and the access function does not map iterators to a data 
element, but to a set of data elements accessed in the task body. The 
benefits of the proposed model are twofold: 1) the complexity of the 
model becomes flexible according to the granularity of the tasks; 
and 2) the program inside the task is not required to be affine, as in 
the traditional polyhedral model. Only the loops within the graph 
scope but outside the task scope need to be affine, and loop 
transformation are applied on them to perform task scheduling. 

 
Figure 5. Task-level polyhedral representation example 

3.2 Unified optimization model 
By analyzing the similarity and differences of the optimization 
schemes, we group the schemes into four basic dimensions: 
Customization, Mapping, Scheduling and Transformation. With the 
target Optimization in the center, we therefore arrive at CMOST as 
the name for our framework. Customization models the design 
spaces at application level using the parameterized source code. 
Mapping and scheduling determine the spatial resource allocation 
and temporal execution for each component in the application 
model. Microarchitecture optimizations are represented as a set of 
semantic-preserving transformations of the application model. Table 
I shows how different system optimizations are projected into the 
four basic dimensions.  

Table I. Generalization of the microarchitecture optimizations 

 Customization Mapping Scheduling Transformation

Data reuse - 
 allocate SRAM 

for buffer 
- 

create local buffer
and fetcher 

Data blocking - - 
be in the order 

of blocks 
- 

Prefetching - 
allocate SRAM 

for buffer 
overlap prefetch 
w/ computation 

create local buffer
and fetcher 

Streaming - 
 allocate SRAM 

for buffer 
pipeline the 

different stages 
- 

Module 
selection 

module design 
space 

select the options 
to map 

- - 

Parallelization - 
determine # of 

duplication 
parallel 

execution 
- 

 

Customization models the application-level design space using the 
parameterized programs written by users. This is inspired by 
Genesis2 [16], which used a model-based methodology where 
design templates and their configurations are separated, and 
exploration of the detailed module implementations can be done at 
system level. While Genesis only supports only 
Verilog/SystemVerilog, CMOST extends the template 
representation to support C/C++, Tcl, Perl and any textual source 
code. This creates a unified mechanism for separating different 
design considerations in the whole design flow, such as platform-
dependent vs. independent, and application-dependent vs. 
independent constraints. Another improvement over Genesis2 is the 
support of describing the design space in templates, which are the 
ranges of the parameters. Automated design exploration can benefit 
from this because a joint exploration of architecture parameters and 
task parameters can be performed. The design space of task t can be 
modeled as a set of Pareto-optimal points in the design metrics 
space: 

                             (1) 
where resti, latti and thrptti are resource utilization, latency and 
throughput of the i-th options of the task t, and St is the number of 
design options for task t.   

Mapping determines the resource allocation of the tasks and data in 
the application model. Binary selection variables bti indicate 
whether a task t is implemented as its design option i.  
 

where res_st is the resource utilization of the selected option for task 
t. Integer duplication factor dt indicates the number of parallel 
hardware units allocated for task t.  

To model data reuse and streaming buffers, binary variables raj and 
saj indicate whether the reuse or prefetching scheme is applied to the 
access reference j of array a.  

The constraints for mapping are the total resource for each type, e.g. 
LUT, FF, DSP, SRAM and BW (for off-chip bandwidth) :1 

Scheduling determines the execution start time of each task instance. 
In the polyhedral model, scheduling functions are used to specify 
the execution order via an affine mapping from the task iteration 
domain to the space of order vectors. To simplify the discussion, we 
only address 1-D order/scheduling vectors. 

(7) 
where x

  is the task instance index, and ( )x  is the order vector. 

However, the polyhedral model is originally used for loop 
transformation where only the relative order of the statement 
instances is of interest. Task scheduling in FPGA optimizations 
needs an extended model to support the execution of the pipelined 
and parallel task instances. In CMOST, data dependency constraints, 
which need to be preserved for the program semantics, consider 
execution latency of the task instances. 

(8) 
where 

s is the start time vector of task s in time domain, and 

[ ] [ ]s x t y
   means task instance [ ]t y

  is dependent on [ ]s x
 . FPGA 

hardware modules are typically running in a pipelined way, where 
the initiation interval is the reciprocal of the throughput. 

   (9) 
 

Duplicated hardware units of the same task allow multiple task 
instances to start simultaneously:  

   (10) 
 

For task-level pipelining, additional constraints for the streaming 
buffers are required (in the case of double buffering):  

    
(11) 

 

where 
tD is the iteration domain of task t, and s t means there is 

a stream from task s to task t. Finally system performance can be 
expressed as:  

where t is the output task we use to measure performance. Figure 6 
provides some examples of the scheduling modeling. 

 
Figure 6. Examples of the scheduling modeling 

                                                                 
1 We assume all modules continue running, so the total BW is the sum of the 

module BWs. More complex cases are beyond the scope of this paper. 

ti ti ti{( , , ) | 0 i }t tMetrics res lat thrpt S  

       (2)    and               1              (3)t ti ti ti
i i

res_s res b b   
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t t

res_d lut total_lut res_d BW total_BW  
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( ) Tx x c   
  

( ) ( ),   [ ] [ ]s s tx lat y s x t y    
   

( ) 1 ( ),   , t t t tx thrpt y t x d y     
   

( ) (T ) /t tx x c d   
  

   ( 2) ( )    ( ) ( )
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t

D D x lat x x lat x

s t x D

          
  

   


max( ( )),  1 max( ( ) ( 1))    (12)t t t
x x

sys_lat x sys_thrpt x x      
  



Transformation changes the application model into another 
semantic-equivalent form so that better mapping and scheduling 
results can be achieved. With this abstraction, a common scheduling 
and mapping engine can be separated from the microarchitecture 
optimizations. In Figure 7, the transformation for data reuse and 
data prefetching can be unified by adding a buffer data0_t and a 
task fetcher into the application model. Design options, such as 
whether to apply reuse, prefetching or the combination of reuse and 
prefetching, are explored transparently in the mapping and 
scheduling steps in a general way.   

 
Figure 7. Unification of optimizations by transformation 

3.3 Design space exploration  
Under CMOST optimization modeling, the whole design space can 
be explored in four increasing scopes: resource-time space, 
semantics-reserving transformations, application alternatives coded 
as a template specification, and, finally, user-interactive space for 
different input specifications (as shown in Figure 8). The inner 
design space is relatively easier to model and explore automatically 
than the outer spaces. The resource-time space is analytically 
modeled where optimal designs can be found by solving 
mathematical programming problems. Many useful transformations 
are related to the specific characteristics of the hardware platforms, 
and they may need to be explored iteratively because of the 
algorithm complexity and inaccuracy in modeling the platform 
details. But efficient exploration schemes can be developed by 
considering the specific features of the transformations. With the 
ranges of the parameters pre-defined in the user source code, the 
application template space can be explored automatically. Given a 
pre-defined system target, the exploration is done from inner 
iteration to outer iteration. If inner iteration fails to find a feasible 
solution, another round of the outer loop iteration will be triggered 
until the design objectives are satisfied.  

 
Figure 8. Multi-layer design space exploration 

4. DESIGN FLOW INTEGRATION 
The CMOST framework also proposes a number of novel 
techniques that are necessary for integrating the system-level 
optimizations into a fully automated design flow.  We highlight a 
few in this section. 

4.1 Task-level dependence analysis 
In the task-level polyhedral model, the access function is extended 
to support mapping from a task instance to a set of data elements, 
instead of to one data element in the traditional polyhedral model. 

This requires the underlying dependence analysis tool be extended 
as well. The dependency is calculated between data regions instead 
of data elements. The work in [17] proposed a formulation to 
calculate the reusable data regions by intersecting the polytopes of 
the data elements that successive loop iterations access. But the 
reuse across two loop iterations is not considered in the formulation. 
Thus, it is necessary to design a general dependence distance 
calculation pass for the task-level polyhedral model representation 
to integrate data reuse into the system-level automation. 

Access functions in the task-level polyhedral model can be 
expressed as where y

 is the 

instance index of task t, 
t
 is the iterator variable inside the task 

body for the array reference, and f is the a linear combination of 
components in y

  and 
t
 . 

We define two task instances as dependent if any data element 
produced by one instance is used by the other instance. A 
dependency polytope can be used to represent the set of index pairs 
of the dependent task instances.  

(13) 
This appears to be different from the basic polyhedral model [14] in 
terms of the mathematic form, but if we substitute the access 
functions in Equation (13), Pst is actually in a perfectly linear form 
in terms of iterator variables.  

Hence all the general polyhedral analysis methods can be applied in 
this task-level model. For example, the reuse buffer size is 
determined by the reuse distance. Reuse distance is the difference of 
task instance indexes between the source and reused access 
references, which can be conservatively calculated as 

(15) 
where lexmax is calculating the lexicographically maximum vector. 
This optimization problem can be solved by integer linear 
programming. The reuse distance we obtain can be used to calculate 
the reuse buffer size by the approach in [10]. 

4.2 Block-based data streaming 
In the task level streaming, tasks in different pipeline stages 
communicate via FIFO so that the synchronization between the 
tasks is minimized, and read and write accesses can be performed in 
parallel. Automated flows such as [18] have been established to 
generate the FIFO-based streaming from high-level programs. 
However, limited by the channel type, the data communicated 
between the streaming stages are required to be in the same order at 
producer and consumer sides. So when the orders do not match, 
additional memory is needed at either side to perform the reordering 
operation.  

We propose an extension of the traditional streaming framework by 
introducing block FIFOs. A block FIFO consists of several memory 
blocks where data access within one block can be accessed in 
random address, and the order of the blocks accessed by both sides 
should be the same. For example, in the DCT case in Figure 9(a), 
data are produced in row order in the first stage and consumed in 
column order in the second stage. Figure 9(d) shows the overall 
structure of the block FIFO, which is similar to a traditional FIFO 
where each data element in the FIFO is replaced by a memory block 
in block FIFOs. Control signals like read, write, empty and full are 
all at block level, and they are used to switch the FIFO pointers of 
blocks at two sides in a cyclic way like basic FIFO. Data accesses 
are only allowed within the block that FIFO pointers are pointing to, 
and address signals are used for random access. This locally-
random-globally-ordered mechanism of block FIFOs fits well in the 
CMOST’s task-centric application model where a block of data is 
accessed by each task instance. 

( ) { ( , ) | , }t t t t tF y f y y D D   
   

{( , ) | ( ) ( ) , , }st s t s tP x y F x F y x D y D     
     

{( , ) | ( , ) ( , ), , , , } (14)st s t s tP x y f x f y x D D y D D         
       

lexmax( )     s.t. ( , ) str y x x y P  
    



 
Figure 9. Example code and hardware structure for block FIFO 

To fully automatically generate the block FIFO-based design, the 
size of the buffer and the address mapping should be determined. 
We first merge the references to be mapped to the block FIFO into 
one union data set. Then the address mapping problem can be 
generalized as: Given a parameterized set   
representing the virtual address in the program, find a one-to-one 
mapping from this set to a non-negative integer set representing the 
block FIFO addresses. The maximum value in the new set should be 
minimized to save memory space. Research has been conducted on 
address mapping for memory size reduction [19], which is quite 
complex. We propose a novel and simple method to generate the 
addresses for block FIFO. 

For example, let the input set be   
This set does not start from zero, so we first subtract a constant from 
the expression and get 256i+8j. The points are scattered in the 
integer space, so we can divide the expression by the GCD of all the 
coefficients and get 32i+j. In addition, since the variable j has a 
small range of 8, the coefficient 32 can be reduced to 8 where a one-
to-one mapping is still satisfied. Then the mapped local address in 
block FIFO is 8i+j. As a result, the original scattered points are 
mapped into a dense range from 0 to 63.  

The detailed algorithm for address mapping can be summarized as 
Algorithm 1. The buffer size is also obtained in the algorithm. 

Algorithm 1 Address mapping for block FIFO 
 1:  input C; // list of the coefficients for the iterators   
 2:  input R; // list of the ranges of the iterators   
 3:  integer p; // current size for the mapped set 
 4: sort C and R according the coefficient values (smaller first) 
 5: divide all the values in C by the GCD of them; set p as 1 
 6: for all the coefficients in C (indexed by i) do  
 7:    if C[i] > p, C[i] = p and p = C[i]×R[i]; // coefficient reduced 
 8:    else, p += C[i]×R[i];                             // already dense 
 9: end for 
10: Insert the constant into C to shift the staring address to zero  
11: return the updated C for local address and p for buffer size 

4.3 Automated SDF generation 
System optimizations for streaming applications have been well 
studied in recent decades. To leverage this work, the current 
CMOST framework adopts the method in [12] for the scheduling 
and mapping optimizations. However, previous works rarely 
explored the issue of creating the synchronous dataflow (SDF) 
model from a sequential C program. Automated SDF generation is 
developed in CMOST to establish a fully automated design flow. 

As shown in Figure 10(b), the SDF graph contains computation 
actors and communication edges. Data streams between actors via 
FIFOs in the edges. The numbers annotated on both sides of the 
edge represent the data rates, i.e., the number of units produced or 
consumed by each firing of the actor. If there are not enough data 
units on the input edge, the actor will not be fired.  

 
Figure 10. MPEG example code and corresponding SDF 

To generate a SDF graph from a C program, a task-level polyhedral 
model is first established. The challenge in generating the SDF 
graph is to ensure that the communication is in order between 
producers and consumers. By adopting block-based data streaming 
presented in the preceding subsection, we do not require each data 
element to be in order, but rather that each block be in order. The 
granularity of the block can be enlarged by merging multiple task 
instances into one block. So the main problem becomes determining 
a proper granularity of the actors that contain a group of task 
instances. If the actor is too fine-grained, the in-order requirement 
may not be met; and inversely, redundant memory resource will be 
consumed. We consider the granularity in terms of loop levels in the 
task iteration domain. 

Theorem 1. Given the dependency polytope            two dependent 
references have in-order accesses at a common loop level l if   

(16) 

where is a constant l-dimensional vector, and is the 
first l dimensions of the task instance index x

 . 

We omit the proof of Theorem 1 due to page limitations. Using 
Theorem 1, we can test and find the maximum loop level for each 
pair of dependent references. A task may connect to the others with 
multiple accesses, so the minimum in-order loop level for all the 
accesses of the task is the granularity for the actor. If no loop level 
can satisfy the condition (16), we consider that this edge cannot be 
streamed and the SDF generation returns with failure. Note that 1) 
Theorem 1 does not give a necessary condition for the in-order test, 
so the result is conservative which results in a larger buffer; 2) loop 
transformation can be applied to enforce the access order. The 
details of these two issues are not addressed here due to page 
limitation. 

5. EXPERIMENTAL RESULTS 
We select a set of real applications as our test bench: Medical 
Imaging contains several 3-D stencils; Black Scholes has a deep 
computation pipeline; MPEG is a typical streaming application; 
NAMD performs computation intensive molecular-level simulation; 
and Smith Waterman performs DNA sequence alignment using 
dynamic programming. We use the OpenMP implementation on a 
state-of-the-art 6-core CPU (Intel Xeon E5-2640@2.5GHz) as the 
reference. Xilinx VC707 contains a Xilinx Virtex-7 chip and 
Convey HC-1ex contains four Xilinx Virtex-6 FPGAs. Table II 
shows the comparison of the execution time results on these 
platforms. Both CMOST and the manual designs use Xilinx 
Vivado_HLS and Vivado as the implementation tool. 

Table II. Comparison of implementation results1 

Design 
CPU 

(OpenMP)
HC1-ex 

(CMOST) 
VC707 

(CMOST) 
VC707 
(manual) 

Speed-
up 

Energy 
Gain 

Medical Imaging 14s 3.5s 7.9s 7.9s 1.7x 26x 
Black Scholes 0.68s 0.06s 0.63s 0.63s 1.1x 17x 

MPEG 2.2s - 0.15s 0.14s 15x 220x 
NAMD 4.8s 0.37 0.62s 0.25s 8x 120x 

Smith Waterman 1.73s - 0.09s 0.06s 18x 270x 
1 

The speedup and energy comparison is between VC707 (CMOST) and CPU. 

The results in Table II show that CMOST can obtain over 8x 
speedup for the last three cases. Although the speedup on first two 
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designs is relative small, the results are comparable to those 
obtained with extensive manual source-code transformations. For 
the last two cases, dynamic scheduling is applied manually, which is 
not supported in the current flow. Overall, we can achieve over 8x 
speedup and 120x energy gain on average.  

Table III. Comparison of programming efforts 

Design 
# of tasks 
in CMOST 

original 
code line 

OpenMP 
changes 

CMOST 
changes 

Manual 
changes 

Medical Imaging 6 700+ 6 28 800+ 
MPEG 5 6000+ 10 35 1500+ 

Table III shows that CMOST achieves the speedup with a small 
number of source code changes (mainly for adding some pragmas to 
mark the hardware task regions). Compared to the manual HLS 
design, a great amount of effort is saved. In addition, once a design 
is ready for one FPGA platform, only one line of change in the 
directive file is needed for platform switching and working 
frequency change. 

 
Figure 11. Impacts of optimizations on different applications 

Figure 11 shows the detailed impacts of each optimization. 
Memory-bounded applications like medical imaging and Black 
Scholes benefit more from off-chip memory optimizations, while 
streaming applications like MPEG rely on task-level pipelining. 
Most of the cases benefit greatly from module duplication except 
that medical imaging has its bottleneck in off-chip memory 
accessing. Kernel frequency increase helps in all the designs, but 
only MPEG and NAMD can gain near-linear scaling, because these 
two are typical computation-bounded applications. 

6. CONCLUSION 
We present an open-source C-to-FPGA automation flow, which can 
achieve over 8x speedup and 120x energy gain on average 
compared to multi-core CPU results using the similar input 
program. A unified optimization framework is proposed for the 
combination of various microarchitecture optimizations. Several 
novel techniques are introduced for the integration of the fully 
automated design flow. Further work will include 1) automating the 
task marking process to further minimize the design efforts and 
enable the optimization on task partitioning; 2) improving the 
design results by introducing more advanced microarchitecture 
optimizations such as dynamic scheduling; and 3) providing 
automation on system evaluation and debugging. CMOST is 
available for download at http://vast.cs.ucla.edu/software/cmost-
system-level-fpga-synthesis. 
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