
INVITED:
Heterogeneous Datacenters: Options and Opportunities

Jason Cong,* Muhuan Huang,*† Di Wu,*† Cody Hao Yu*

{cong, mhhuang, allwu, hyu}@cs.ucla.edu
*Computer Science Department †Falcon Computing Solutions, Inc.

University of California, Los Angeles

ABSTRACT
In this paper we present our ongoing study and deploy-
ment efforts for enabling FPGAs in datacenters. An im-
portant focus is to provide a quantitative evaluation of a
wide range of heterogeneous system designs and integration
options, from low-power field-programmable SoCs to server-
class computer nodes plus high-capacity FPGAs, with real
system prototyping and implementation on real-life appli-
cations. In the meantime, we develop a cloud-friendly pro-
gramming interface and a runtime environment for efficient
accelerator deployment, scheduling and transparent resource
management for integration of FPGAs for large-scale accel-
eration across different system integration platforms to en-
able “write once, execute everywhere.”

1. INTRODUCTION
Computation has evolved to an unprecedented scale. Grow-

ing amounts of data are being collected from many sources
such as web pages, social networks or IoT devices, while
at the same time more sophisticated algorithms are being
deployed in emerging applications such as customized ad-
vertisement, user behavior mining, and visual/audio recog-
nition. Service providers such as Google, Microsoft, and
Amazon are expanding their datacenter infrastructures to
meet the demands. However, the semiconductor technology
is reaching its physical limit of scaling [1] since the power
density of a single chip is no longer able to increase. Also,
energy has become the dominant limiting factor of modern
datacenters. To sustain scalability, datacenters need to find
and use drastic methods for reducing energy consumption.

Many recent studies have identified that emerging big-
data workloads expose“scale-out”characteristics [2], for which
the modern processor designs are over-provisioning [3]. Rec-
ognizing such a mismatch between the architecture and work-
loads, researchers have proposed to use simple, low-power
CPUs as major components in datacenters [4–6]. Some large
companies have also been actively exploring in this direc-
tion [7]. However, low-power CPUs may suffer from signifi-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC ’16, June 05 - 09, 2016, Austin, TX, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4236-0/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2897937.2905012

cant performance reduction for many computationally inten-
sive tasks, which makes the overall energy-efficiency worse
than high-end CPUs [8].

This paper evaluates system design options in heteroge-
neous datacenters with FPGA accelerators. We perform
quantitative studies on a wide range of systems, including
an Xeon cluster, an Xeon cluster with FPGA accelerator
attached to the PCI-E bus, a low-power Atom CPU clus-
ter, and a cluster of embedded ARM processors with on-
chip FPGA accelerators. We have the following observations
from the experiments:

Observation 1: By experimenting with different dis-
tributed machine learning workloads on an Intel Atom clus-
ter and an ARM cluster, we conclude that although the
small-core CPU clusters consume only 0.2× to 0.3× of the
power of a server-class cluster, the performance may slow
down by as much as 10× (see Section 4.3 for details). As a
result, the total energy consumed by these low-power pro-
cessors is still many times more than their server-class coun-
terparts.

Observation 2: Our experiments demonstrate that poor
performance of small-core CPUs can be compensated for by
accelerators built on the same chip. Our prototyping clus-
ter composed from Xilinx Zynq SoCs [9], which have both
embedded ARM cores and FPGA fabrics (see Section 2 for
details), demonstrated 8× to 15× speedup and energy re-
duction compared to Atom and ARM systems, and 2x per-
formance gain and energy reduction compared to a regular
Xeon server.

Observation 3: The FPGA accelerator is more effective
for big-core systems compared to small-core systems for big-
data analytic applications. One of our experiments shows
that the performance of one Xeon server plus FPGA accel-
erator is around 2× faster than eight nodes of Zynq, even
though the aggregated computing power of the FPGA fab-
rics on these eight nodes is around 2× more than the FPGA
in the Xeon server. The main reason is that on the Zynq
cluster, the sequential part of the program becomes more
dominant after acceleration, and the cost of moving data
to the accelerator is higher. In terms of energy efficiency,
on the other hand, the difference between the two types of
systems is very small.

In parallel to evaluating various options in building accelerator-
rich systems, we also developed programming models and
runtime management systems for the ease deploying accel-
erators at datacenter scale. These efforts are briefly high-
lighted in this paper. Conventional solutions in using accel-
erators in the distributed cluster-computing environment are

mostly based on OpenCL and MPI. However, these solutions
still require programmers to have a detailed understanding
of the underlying hardware architectures in order to gener-
ate high-performance accelerators. For example, MPI-based
inter-node communication code needs to be rewritten when
porting designs from one architecture to another.

We address these programming challenges by providing
a cluster-wise accelerator programming model and runtime
system, named Blaze, that is portable across accelerator
platforms. It handles inter-node communication protocol,
intra-node data movement, and accelerator task scheduling.

Blaze is designed for a recent popular cluster computing
framework called Spark [10]. The accelerators are abstracted
as subroutines for Spark tasks. These subroutines can be ex-
ecuted on local accelerators when they are available; when
they are not, the subroutines will be executed on the CPU
to guarantee application correctness. The entire process is
transparent to programmers. Blaze also supports a variety
of application frameworks by providing a generalized inter-
face in C++ and Java for transparent accelerator execution.

Moreover, Blaze can save application programmers and
accelerator developers from explicit communication handling
between the high-level programs with low-level accelerator
drivers. Most big-data frameworks like Hadoop and Spark
are based on Java, so the input data needs to be preprocessed
into native format and transferred to the accelerator process.
This transfer may incur considerable overheads and under-
mine the benefit of accelerators, especially when the system
is running on low-power SoCs like Zynq. Our runtime sys-
tem minimizes such overheads by adopting mechanisms such
as data caching and accelerator sharing.

2. SYSTEM PLATFORM OPTIONS
To evaluate the performance and energy efficiency of vari-

ous accelerator-rich systems, we built several real prototype
hardware systems to experiment with real-world big-data
applications.

2.1 Baseline Big-Core and Small-Core
Systems

For the baseline of big-core CPU systems, we built a clus-
ter with dual-core Intel Xeon CPU servers connected with
both 1G and 10G Ethernet. The cluster contains more than
20 server nodes. A snapshot of the cluster is shown in Fig. 1.

For the baseline of small-core CPU systems, we used a
cluster of eight nodes of Intel Atom CPUs and a cluster of
eight nodes of embedded ARM cores. The ARM cluster is
the same as our prototype presented later in this section.

2.2 Big-Core with PCIE Accelerators
Similar to existing GPGPU platforms, FPGA accelera-

tors can also be integrated into normal server nodes with
PCIE slots. Taking advantage of the energy efficiency of the
FPGA chips, these PCIE accelerator boards do not require
an external power supply, which makes it possible to de-
ploy FPGA accelerators into datacenters without the need
to modify existing infrastructures.

In our experiments, we integrate AlphaData (AD) FPGA
boards into our Xeon cluster in Fig. 1. Each FPGA board
contains a Xilinx Virtex-7 XC7VX690T-2 FPGA chip with
16GB of on-board memory.

2.3 Small-Core with On-Chip Accelerators

Figure 1: Experimental cluster with standard server
node integrated with PCI-E based FPGA board
from AlphaData

We also built a customized cluster of low-power CPU cores
with on-chip FPGA accelerator. The Xilinx Zynq SoC was
selected as the experimental heterogeneous SoC, which in-
cludes a processing system based on dual ARM A9 cores and
a programmable FPGA logic. The accelerators are instan-
tiated on the FPGA logic and can be reconfigured during
runtime. We build a cluster of eight Zynq nodes.

(a) System overview of the prototype cluster

(b) Snapshot of the proto-
type cluster

Figure 2: The prototype system design

The entire hardware system is built with off-the-shelf com-
modity hardware. A snapshot of the system is shown in
Fig. 2(b). Each node in the cluster is a Xilinx ZC706 board,
which contains a Xilinx Zynq XC7Z045 chip. Each board
also has 1GB of on-board DRAM and a 128GB SD card used
as a hard disk. The ARM processor in the Zynq SoC shares
the same DRAM controller as well as address space with
the programmable fabrics. The processor can control the
accelerators on the FPGA fabrics using two system buses.
The memory is shared through four high-performance mem-

ory buses (HPs) and one coherent memory bus (ACP). All
the boards are connected to a Gigabit Ethernet switch. The
hardware layout of the Zynq boards and their connection is
shown in Fig. 2(a) in the bottom box for the ZC706 board.

The software setup and accelerator integration method
are shown in the upper box in Fig. 2(a). A lightweight
Linux system is running on the ARM processors of each
Zynq board, which provides drivers for peripheral devices
such as Ethernet and SD card, and also controls the on-chip
FPGA fabrics. To instantiate our machine learning acceler-
ators on the FPGA, we design a driver module to configure
the control registers of the accelerators as memory-mapped
IOs, and use DMA buffers to facilitate data transfers be-
tween the host system and the accelerators. The machine
learning accelerators are synthesized as FPGA configuration
bitstreams and can be programmed on the FPGA at run-
time.

2.4 System Profile Summary
With our prototype clusters, we can evaluate heteroge-

neous accelerator-rich systems on different scales. A sum-
mary of the specifications and configurations of CPU and
FPGA architectures that are used in our prototype plat-
forms are presented in Table 1 and Table 2, respectively.

Table 1: Prototype System Specifications
Item Model Frequency Technology
Xeon E5-2620v3 2.4GHz 22nm
Atom D2500 1.86GHz 32nm

Zynq-ARM Cortex A9 800MHz 28nm
Zynq-FPGA XC7Z045 200MHz 28nm
AD-FPGA XC7VX690T-2 200MHz 28nm

Table 2: Experimental Platform Configurations
Item Configuration Avg. Power

Big-Core Xeon 175W
Small-Core Atom 30W

Smaller-Core Zynq ARM 10W
Smaller-Core+FPGA Zynq 10W

Big-Core+FPGA Xeon + AD-FPGA 200W

3. PROGRAMMING MODEL AND
RUNTIME SYSTEM

In this section we discuss options and opportunities in pro-
gramming models and runtime systems for accelerator-rich
systems. Particularly, we present our software support for
benchmarking big-data applications on different hardware
systems.

3.1 Conventional Approaches
We found that conventional programming models used

for programming accelerators in a distributed environment,
such as OpenCL and MPIs, suffer from several disadvan-
tages. First, MPI is not a friendly programming interface
for heterogeneous computing. It requires excessive low-level
programming efforts and is not portable across platforms;
deploying the MPI framework to an SoC involves detailed
platform-dependent settings and complex communication pro-
tocols between the MPI process and the FPGA accelerator.

Second, although the OpenCL framework provides a some-
what unified programming model and a runtime system for
heterogeneous compute resources including multi-core CPUs,
GPUs, and FPGAs on a single server node, it is still hard
to adopt it in heterogeneous datacenters for the following
reasons:
Portability: Although an OpenCL kernel can be compiled
at runtime and runs on different platforms, the performance
of the same implementation is not portable. In fact, we
observed that an OpenCL program that is originally de-
signed for GPU architecture may suffer from more than 35x
slowdown against a single-thread CPU when running on the
FPGA. It means that different accelerator designs need to be
used on different types of accelerator platforms. This adds
to the complexity of application design based on an openCL
framework and can be challenging to handle at very large
scales.

In addition, OpenCL does not provide good support for
accelerators sharing and virtualization, and ensuring task
completion when required accelerators are not available. As
a result, programmers have to be responsive to these possible
exceptions that cause failed executions.
Scalability: The openCL runtime system is designed for
single-node execution, which means that application pro-
grammers still need to rely on inter-node communication
models such as MPI in datacenters to deploy distributed
applications.

Finally, from a resource management point of view, in-
creasing accelerator utilization becomes key to system per-
formance and throughput. However, accelerators are spe-
cialized hardware and are non-preemptive. Thus, they can-
not be easily shared among multiple processes. Handling
accelerator sharing among multiple cluster tenants remains
an unsolved problem.

To address the above issues concerning the use of OpenCL
and MPIs, we developed a new accelerator runtime system,
called Blaze. Blaze is platform-independent and is portable
across different systems. Together with Spark, this runtime
system can scale out to a cluster computing environment.

3.2 Review: Apache Spark
Apache Spark [10] is a fast and general large-scale data

processing framework. The key innovation of Spark is re-
silient distributed datasets (RDD) [11], which is a data col-
lection abstraction that allows for in-memory caching of
data blocks to reduce the I/O and communication overhead
of large-scale data processing. In addition, Spark adapts
a DAG-based scheduling scheme to manipulate RDDs ef-
ficiently. Each Spark task is constructed with a series of
transformations on RDDs and one action. A transforma-
tion task generates a new RDD to represent the processed
data, while an action task generates a set of results from the
input RDD. Note that instead of executing each transforma-
tion as a task, Spark groups a lineage of transformations as
a single task and executes the whole lineage when an action
is invoked, which leads to more efficient task scheduling.
Spark has demonstrated significant speedup over Hadoop
MapReduce [12], especially for iterative algorithms. Cur-
rently, Spark is one of today’s most popular data processing
frameworks, and it is maintained by over 400 developers
from more than 100 companies.

Since Spark attenuates the I/O bottleneck in big-data
computation by caching RDDs in memory, the potential

benefits to accelerators are more prominent. This is the
main reason that Spark is selected as a one accelerator-aware
runtime system.

3.3 Runtime System Overview

Global Acc Manager

SparkDriver

SparkWorker Node AccManager ACC
Datacenter Node

Agent

SparkWorker Node AccManager ACC
Datacenter Node

Agent

Blaze App Blaze Acc Impl

Figure 3: Overview of the Blaze runtime system

An overview of the proposed Blaze runtime system design
is illustrated in Fig. 3. The system has three major com-
ponents: a global accelerator manager, a Spark agent and
a node accelerator manager. The global accelerator man-
ager oversees the accelerator status in the cluster and de-
cides where to launch Spark driver and the Spark workers.
The Spark agent is created as an extension to the Spark
RDD, which includes a communication layer that makes ac-
celerator requests, prepares input data for accelerators and
collects results. The node accelerator manager runs on each
datacenter node and schedules accelerator execution based
on the requests from the Spark agent. In the runtime sys-
tem, cluster-level task execution is effectively managed by
the Spark framework, leveraging the efficient scheduling pro-
vided by that framework. Spark tasks only send requests for
accelerators within their local node to avoid inter-node com-
munication.

3.4 Application Interface
The accelerator-aware programming model for applica-

tions is designed as an extension of Spark, with the goal
of providing a clean abstraction of accelerators with a min-
imum of required code changes .

As mentioned in Section 3.2, a Spark program is com-
posed from a series of transformations and actions on RDDs.
We provide a set of APIs for users to extend original Spark
RDDs with accelerator capability. In the APIs, an accelera-
tor ID is provided by the user to indicate the desired acceler-
ator functionality. This provides the runtime system capa-
bilities to schedule tasks across different types of accelerator
platforms across the datacenter, as long as the accelerators
have the same interface and are marked with matching IDs.
With this programming model, users can take advantage of
accelerators in datacenters without knowing any implemen-
tation or platform details.

On the other hand, having a user identifying the accelera-
tor ID can be non-trivial in practice. Alternative approaches
include using higher-level APIs that expose RDD transfor-
mation as libraries, or using pattern matching to let the
runtime system locate the desired accelerator automatically.
We leave such possibilities for future exploration.

Finally, the programming model provides an interface for
application developers to write CPU execution code that can
realize the same functionality as the accelerators. In the case

that accelerators are not readily available on the datacenter
node due to lack of deployment, insufficient resources, or
network congestion, etc., the computation tasks fall back to
JVM and are executed on the CPU.

3.5 Accelerator Implementation Interface
Our programming model for accelerator design is based

on a data-flow graph; each accelerator task takes a number
of input data items and produces one or more output data
items. Blaze exposes a few APIs for accelerator developers
to describe the task input and output. Internally these APIs
handle data communication between Spark programs and
the accelerators. The APIs are compatible with C++ and
OpenCL. With these APIs, the OpenCL platform and the
data object will be managed by the runtime system instead
of the developer, reducing much of the boilerplate code in the
original OpenCL program. Furthermore, based on the user-
provided accelerator specification, the accelerator kernel can
be generated automatically from the Merlin compiler [13] by
analyzing the accelerator interface.

3.6 Scheduling Optimization
As the cluster is shared by various applications which may

request for different accelerators, each FPGA may be used
to run different accelerators, in which case runtime FPGA
reprogramming is needed. Bitstream reprogramming typi-
cally takes 1 to 2 seconds and such overhead is prominent
since accelerator tasks are typically at microseconds level.
To address this issue, our global accelerator manager takes
reprogramming overhead into account and adopts a delay-
scheduling based approach to place applications with differ-
ent accelerator needs into different set of nodes.

4. EVALUATION RESULTS

4.1 Application Case Studies and
Accelerator Designs

Today, machine learning has become the core of the big-
data applications. The huge success of Internet services
such as data-mining, web-search and advertisement drives
the rapid development of machine learning algorithms. In
our evaluation, we select two widely used machine learning
algorithms in the experiments: logistic regression (LR) and
K-Means clustering (KM).

Logistic Regression (LR): Logistic regression [14] is a
combination of a linear model and a logistic function, which
regulates the output between 0 and 1. The baseline of LR
in our experiments is the training application implemented
by Spark MLlib, with the LBFGS algorithm.

K-Means clustering (KM): K-Means clustering is an
iterative algorithm which classifies data points (features)
into several clusters. The baseline KM implementation in
our experiments is also from Spark MLlib. The compute
kernel selected is the local sum of center distances calcula-
tion. The datasets used in K-Means are the same as LR.

Both of these applications are iterative, so that they can
take advantage of the data caching capability provided by
the Blaze runtime system to mitigate the data transfer over-
heads between the host Spark program and FPGA acceler-
ators. The input data set of the MNIST handwritten dig-
its [15] is selected for both LR and KM.

4.2 Accelerator Kernel Design

The LR and KM accelerator kernels used in our experi-
ments are from the Machine Learning FPGA Acceleration
Library from Falcon Computing Solutions [16]. They are
written as parameterized C++ code for Xilinx Vivado HLS.
For all the designs on the AlphaData (AD) FPGA board, we
use the Xilinx SDAccel which automatically generates the
FPGA bitstream and exposes an interface to OpenCL. For
Zynq designs, we directly use the Xilinx Vivado toolchain to
get the bitstream.

Table 3: Specifications of our FPGA accelerators
App Device LUTs FF DSP Speedup
LR AD 54% 37% 45% 42x
LR Zynq 58% 28% 48% 11x
KM AD 34% 18% 20% 26x
KM Zynq 22% 6% 18% 7x

Table 3 summarizes the resource consumption of our ac-
celerator designs on different devices, as well as the speedup
compared to single-core performance of the Xeon CPU in
our cluster.

4.3 System Performance and Energy Results

4.3.1 Experiment Methodology
In the experiments discussed in this section, we measure

the total application time, including the initial data load
and communication. The energy consumption is calculated
by measuring the average power consumption during oper-
ation using a power meter and multiplying it by the execu-
tion time, since we did not observe significant variations of
system power during our experiments. All the energy con-
sumption measurements also include a 24-port 1G Ethernet
switch.

4.3.2 Big-Core vs. Big-Core + FPGA
We first present the effectiveness of FPGA accelerators in

a common datacenter setup. Fig. 4 includes the compari-
son between a CPU-only cluster and a cluster of CPU with
PCIE FPGA boards using LR, KM. For the machine learn-
ing workloads where most of the computation can be ac-
celerated, FPGA can contribute to significant speedup with
only a small amount of extra power. More specifically, the
big-core plus FPGA configuration achieves 3.05× and 1.47×
speedup for LR and KM respectively and reduces the overall
energy consumption to 38% and 56% of the baseline respec-
tively.

4.3.3 Small-Core + FPGA vs. Big-Core + FPGA
We then evaluate the performance and energy consump-

tion between big-core with FPGA and small-core with FPGA
with the application of LR and KM. Fig. 4 illustrats the ex-
ecution time and energy consumption of running LR and
KM applications on different systems. Notably, both the
performance and energy efficiency of pure Atom and ARM
clusters are worse than the single Xeon server, which con-
firms the argument in [8] that low-power cores could be less
energy-efficient for computation-intensive workloads.

Several observations can be drawn from the results in
Fig. 4. First, for both small-core and big-core systems,
the FPGA accelerators provide significant performance and

10
.9
7

5.
26

0.
33 0.
69

7.
8

3.
13

0.
5 1.
06

8X	ARM 8X	ATOM 1X	XEON+AD 8X	ZYNQ

NO
RM

AL
IZ
ED

	
EX
EC
UT

IO
N	
TI
M
E

LR KM

6.
86

5.
21

0.
38

0.
43

4.
88

3.
1

0.
56

0.
66

8X	ARM 8X	ATOM 1X	XEON+AD 8X	ZYNQ

NO
RM

AL
IZ
ED

	
EN

ER
GY

Figure 4: Execution time (above) and energy con-
sumption (below) normalized to the results on one
Xeon server.

energy-efficiency improvement—not only for kernels but also
for the entire application. Second, compared to big-core sys-
tems, small-core systems benefit more from FPGA accelera-
tors. This means that it is more crucial to provide accelera-
tor support for future small-core-based datacenters. Finally,
although the kernel performance on eight Zynq FPGAs is
better than one AD FPGA, the application performance of
Xeon with AD-FPGA is still 2× better than Zynq. This
is because on Zynq the non-acceleratable part of the pro-
gram, such as disk I/O and data copy, is much slower than
Xeon. On the other hand, the difference in energy-efficiency
between Xeon plus FPGA and Zynq is much smaller.

4.4 System Overheads Analysis
Here we provide more insights into the comparison be-

tween big-core plus FPGA and small-core plus FPGA by an-
alyzing the system overheads using the example of LR. The
major overheads come from the extra data copies from the
Spark application to the FPGA device. The first data copy
in this process is the serialization of JVM data into native
format, which means consecutive data stored in memory.
The second data copy is the shared memory copy between
the Spark worker process and the node manager process.
The last data copy is the DMA copy from node manager to
the FPGA device. For AD FPGAs, this last data copy is the
PCIE transfer, while for Zynq FPGAs it can be mitigated
since the FPGA and ARM cores share the memory buses.

In Fig. 5 the breakdown of the execution time of one it-
eration of LR is presented on both the Zynq and Xeon plus
AD cards. The results show that for Zynq, the proportions
of the data transfer overheads are considerably larger than
the Xeon case. One of the major reasons for this is the slow
frequency of the memory controller. This also contributes
to the reason why the energy-efficiency of small-core plus
FPGA is slightly worse than big-core plus FPGA.

4.5 Summary of Different Systems
Finally, Table 4 summarizes our evaluation of different

heterogeneous platforms. For our application case study
of compute-intensive machine learning applications, pure
small-core systems have the worst performance and con-
sume the most energy. This means in future datacenters,
it can be unrealistic to have a small-core-only configuration.

KM-OPT

KM-NA ÏV E

LR-OPT

LR-NA ÏV E

Accelerator Serialization Shm	Transfer PCIE	Transfer

KM-OPT

KM-NAÏVE

LR -OPT

LR -NAÏVE

Xeon+
AD-FPGA

Zynq

Norma lized	 Execution	 T ime

3.6%

91.6%

5.2%

88.5%

1.3%

17.8%

1.7%

21.4%

Figure 5: Execution time breakdown for Spark tasks
on different platforms. The “NAIVE” implementa-
tions transfer data every iteration, while the “OPT”
implementation includes the data pipelining and
caching provided by the Blaze. The number on the
right of each bar is the percentage of accelerator
time within the total task.

Small-core plus FPGA configurations, on the other hand,
have the best energy-efficiency and can also provide better
performance than big-core-only configurations.

Table 4: Summary of experimental results on differ-
ent platform configurations

Item Performance Energy-Efficiency
Big-Core + FPGA Best Best

Small-Core + FPGA Better Best
Big-Core only Good Good

Small-Core only Bad Bad

5. CONCLUSION AND FUTURE WORK
In this paper we discussed the challenges and opportuni-

ties of enabling FPGA-based accelerators as one of the build-
ing blocks in future datacenters to break the energy wall of
scaling. We explored several different kinds of accelerator-
rich system configurations and built prototypes to evalu-
ate each configuration with real-world applications. We also
highlighted the programmability issue for large-scale accelerator-
rich systems and presented a runtime system called Blaze,
which provides a high-level programming interface to Spark
and automatically schedules accelerator execution without
programmer interference.

Many opportunities and optimization schemes in both the
hardware and software system designs can be explored. For
example, the ratio between number of cores and accelerators
can be optimized for different workloads. Moreover, the task
scheduler of the runtime should be aware of accelerator local-
ity in order to make intelligent scheduling for better system
utilization and quality of service. Finally, as future datacen-
ters will very likely be composed from different combinations
of big-core, small-core and accelerators, resource allocation
on heterogeneous systems can be a challenging problem to
investigate.

6. ACKNOWLEDGMENT
This work is partially supported by the Intel Corporation

with matching funds from the NSF under the Innovation
Transition (InTrans) Program (CCF-1436827), and in part
by C-FAR, one of the six centers of STARnet, a Semiconduc-
tor Research Corporation program sponsored by MARCO
and DARPA. We also want to thank Xilinx for donating the
FPGA boards (ZC706 and Alphadata) used in our evalua-
tions.

7. REFERENCES
[1] H. Esmaeilzadeh et al., “Dark silicon and the end of

multicore scaling,” in ISCA’11.

[2] M. Ferdman et al., “Clearing the clouds: A study of
emerging scale-out workloads on modern hardware,”
SIGPLAN Not., vol. 47, no. 4, pp. 37–48, Mar. 2012.

[3] R. Hameed et al., “Understanding sources of
inefficiency in general-purpose chips,” in ISCA’10.

[4] V. Janapa Reddi et al., “Web search using mobile
cores: Quantifying and mitigating the price of
efficiency,” SIGARCH Comput. Archit. News, vol. 38,
no. 3, pp. 314–325, Jun. 2010.

[5] P. Lotfi-Kamran et al., “Scale-out processors,”
SIGARCH Comput. Archit. News, 2012.

[6] D. G. Andersen et al., “FAWN: A fast array of wimpy
nodes,” in SOSP’09, 2009.

[7] “Baidu taps marvell for ARM storage server SoC | ee
times,” http:
//www.eetimes.com/document.asp?doc id=1263074,
accessed: 2016-3-1.

[8] L. Keys et al., “The search for Energy-Efficient
building blocks for the data center,” in Computer
Architecture, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 1 Jan. 2012, pp. 172–182.

[9] V. Rajagopalan et al., “Xilinx zynq-7000 epp–an
extensible processing platform family,” in 23rd Hot
Chips Symposium, 2011, pp. 1352–1357.

[10] M. Zaharia et al., “Spark: cluster computing with
working sets,” in Proceedings of the 2nd USENIX
conference on Hot topics in cloud computing, 2010.

[11] M. Zaharia et al., “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing,” in Proceedings of the 9th USENIX
conference on Networked Systems Design and
Implementation, 2012, pp. 2–2.

[12] “Apache Hadoop.” [Online]. Available:
hadoop.apache.org

[13] J. Cong et al., “Source-to-source optimization for
HLS,” in FPGAs for Software Programmers, D. Koch
et al., Eds. Springer International Publishing, 2016.
[Online]. Available:
http://www.springer.com/us/book/9783319264066

[14] D. A. Freedman, Statistical Models: Theory and
Practice. Cambridge University Press, 2009.

[15] Y. LeCun et al., “The mnist database of handwritten
digits,” 1998.

[16] “Falcon Computing Solutions.” [Online]. Available:
http://www.falcon-computing.com

