
On-chip Interconnection Network for
Accelerator-Rich Architectures

Jason Cong Michael Gill Yuchen Hao Glenn Reinman Bo Yuan

Center for Domain Specific Computing, UCLA
{cong, mgill, haoyc, reinman, boyuan}@cs.ucla.edu

ABSTRACT

Modern processors have included hardware accelerators to
provide high computation capability and low energy con-
sumption. With specific hardware implementation, acceler-
ators can improve performance and reduce energy consump-
tion by orders of magnitude compared to general purpose
cores. However, hardware accelerators cannot tolerate mem-
ory and communication latency through extensive multi-
threading; this increases the demand for efficient memory
interface and network-on-chip (NoC) designs.

In this paper we explore the global management of NoCs
in accelerator-rich architectures to provide predictable per-
formance and energy efficiency. Accelerator memory ac-
cesses exhibit predictable patterns, creating highly utilized
network paths. Leveraging these observations we propose
reserving NoC paths based on the timing information from
the global manager. We further maximize the benefit of
paths reservation by regularizing the communication traffic
through TLB buffering and hybrid-switching. The combined
effect of these optimizations reduces the total execution time
by 11.3% over a packet-switched mesh NoC and 8.5% over
the EVC [18] and a previous hybrid-switched NoC [29].

1. INTRODUCTION
Accelerators offer orders-of-magnitude improvement in per-

formance and energy efficiency as compared to general-purpose
cores. Driven by the need for energy efficiency, the in-
dustry has proposed incorporating accelerators other than
general-purpose cores into a die. These on-chip accelera-
tors are application-specific implementations of a particu-
lar functionality, and can range from simple tasks (i.e. a
multiply-accumulate operation) to complex tasks (i.e. FFT,
encryption/decryption). An example of existing accelerator
architecture designs is the IBM wire-speed processor archi-
tecture [12], which features special-purpose dedicated accel-
erators optimized for security, XML parsing, compression,
etc. We believe that future computing servers will improve
their performance and power efficiency via extensive use of
accelerators.

Unlike GPUs, accelerators cannot hide memory latency
through extensive multithreading. The throughput of an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org
DAC’15, June 07-11, 2015, San Francisco, CA, USA
Copyright is held by the owner/authors. Publication rights licensed to ACM.
ACM 978-1-4503-3520-1/15/06$15.00
http://dx.doi.org/10.1145/2744769.2744879.

accelerator is often bounded by the rate at which the accel-
erator is able to interact with the memory system. For this
reason, an open question is: How should the accelerators,
cores, buffers, L2 caches and memory controllers should be
interconnected for maximum efficiency? Existing intercon-
nect designs for accelerator architectures use partial crossbar
switches [12, 10], bus [24] and packet-switched networks [3,
19] to transfer data between memory and accelerators. In
Larrabee [24], a wide bi-directional ring bus is used to limit
the communication latency. Bakhoda et al. [3] propose using
a packet-switched mesh interconnect to connect accelerators
and memory interfaces.

Unfortunately, as the number of on-chip accelerators in-
creases, crossbar switches will consume intolerable area over-
head due to the inability to scale. The ring bus solution
is not sufficient to avoid latency that reaches problematic
levels when the number of nodes increases beyond a certain
point. Even though the modern packet-switched network en-
ables high bandwidth by sharing channels to multiple packet
flows, it comes with long per-hop delays and a high energy
overhead.

To combat this problem, circuit-switched fabrics for CMPs
are explored [13, 27, 28]. Compared to packet-switched
networks, circuit-switched networks can significantly lower
the communication latency, but suffer from the long setup
and teardown latency. In order to amortize the setup over-
head, hybrid-switched networks are proposed, where packet-
switched flits and circuit-switched flits are interleaved on the
same physical channels [16].

Our investigation shows that accelerator memory accesses
exhibit pairwise bulk transfer and streaming, creating highly
utilized but frequently changing paths between the acceler-
ator and memory interfaces. Moreover, hardware accelera-
tors feature well-defined I/O patterns following fixed timing,
allowing for better resource scheduling. Previous circuit-
switched networks do not work well because the setup de-
cisions are made locally and are unaware of the long-term
communication patterns or the characteristics of accelera-
tors; this results in unnecessary setups/teardowns and in-
frequent use of circuit paths. In the meantime, frequent
setup and teardown requests hurt the overall performance.

In this paper we propose the Hybrid network with Pre-
dictive Reservation (HPR) which globally manages NoC re-
sources and reserves paths based on the timing of accelerator
memory accesses. The global accelerator manager identifies
the location and timing of accelerator memory accesses, re-
serves paths and resolves conflicts in advance to improve
circuit utilization. Meanwhile, the circuit-switched paths
are reserved at the granularity of NoC cycles, maximizing
the benefit of circuit-switched paths while minimizing the
interference caused to packet-switched traffic.

Router

GAM

MC

MC

MC

MC Memory
Controller

MC

Global Accelerator
Manager

GAM

Tile

L2 Cache Bank

Processing
Engine

CPU /
Accelerator L1$

Figure 1: The overview of the accelerator-rich architecture

The key contributions of this work are:
•We analyze the common characteristics of accelerator com-
munication patterns, which suggests opportunities and chal-
lenges in shared resource management.
• We extend the global accelerator manager to identify exact
locations and precise timing periods of accelerator memory
accesses, and predictively reserve a series of circuit-switched
paths before the accelerator starts to execute.
• To support the global circuit-switching decisions, we pro-
pose a new hybrid network design that provides predictable
performance for circuit-switched traffic, while minimizing
the interference caused to packet-switched traffic.

2. BASELINE ARCHITECTURE
In this section we describe our baseline accelerator ar-

chitecture and on-chip interconnect. Fig. 1 illustrates the
overall chip layout of the accelerator-rich architecture [7].
This platform consists of cores (with private L1 caches), ac-
celerators, shared L2 banks, memory controllers, the global
accelerator manager, and the on-chip interconnect. We as-
sume a 2D mesh topology with memory controllers placed
in the corners, similar to the topology used in the Tilera
TILE64 [26] and Intel’s 80-core design [25], since it provides
a simple and scalable network.

Our on-chip accelerator architecture features three key
elements: 1) on-chip accelerators that implement complex
specialized fixed functionalities, 2) buffer in NUCA [9], a
modified cache that enables allocation of buffers in the shared
last-level cache, 3) a global accelerator manager that assists
with dynamic load balancing and task scheduling.
Loosely Coupled Accelerators: The on-chip accelera-
tors that we consider in this work are specialized hardware
computational units that are shared on an as-needed basis
among multiple cores. These accelerators can significantly
improve performance and save energy. However, this mas-
sive increase in performance typically comes with an increase
in memory demand that is significantly larger than general-
purpose cores. Fig. 2 shows the block diagram of loosely
coupled accelerators featuring a dedicated DMA-controller
and scratch-pad memory for local storage. The DMA en-
gine is responsible for transferring data between the SPM
and shared L2 caches, and between SPMs in the scenario of
accelerator chaining.
Buffer in NUCA: Accelerators are designed to work with
private buffers. These buffers are introduced to meet two
goals: 1) bounding and reducing the fluctuation in latency

Customized Datapath

Accelerator

DMA SPM Control Unit

Network Interface

Figure 2: The microarchitecture of the on-chip accelerator

between memory accesses, and 2) taking advantage of reuse
of data within the buffer. As the number of accelerators in
a system grows, the amount of dedicated buffer space de-
voted to these accelerators grows as well. In order to make
more efficient use of chip resources, previous work provides
a mechanism to allocate these buffers in cache space [11, 9,
19]. When not used as buffers, this memory would instead
be used as regular cache. While there are a number of mech-
anisms for allocating buffers in cache, we chose the Buffer
in NUCA [9] scheme due to the consideration of spatial lo-
cality and the distributed nature of banked caches found in
many-core systems.
The Global Accelerator Manager (GAM): The GAM
fulfills two primary roles: 1) it presents a single interface for
software to invoke accelerators, and 2) it offers shared re-
source management including buffer allocation and dynamic
load balancing among multiple accelerators to allow collab-
oration on a single large task. To invoke an accelerator, a
program would first write a description of the work to be
performed to a region of shared memory. This description
includes location of arguments, data layout, computation
to be performed, and the order in which necessary opera-
tions to be performed. By evaluating the task description,
the GAM splits the requested computation into a number
of fixed-size data chunks to enable efficient parallelism, pre-
screens common TLB misses using a shared TLB, and then
dispatches tasks to available accelerators [8].

3. NETWORK CHARACTERIZATION
Due to the pipelined hardware implementation, accelera-

tors often exhibit predictable memory access patterns such
as bulk transfers and streaming. In this section we set out
to characterize the common accelerator memory access pat-
terns that motivate our proposed NoC design.

We collect the number of streaming flits between node
pairs and show the network traffic breakdown in Fig. 3.
Streaming flits are defined as consecutive flits traveling be-
tween the same source/destination pair. We can observe
that the data streams account for a considerable fraction
of total on-chip data traffic – more than 70% of total flits
transmitted – which suggests that effective optimizations
will have a significant impact on performance and efficiency.

We further investigate the memory access patterns of cer-
tain benchmarks to explore the potential optimization op-
portunities. Fig. 4(a) shows the L2 cache bank access traces
for Deblur from the medical imaging suite [6]. The De-

blur accelerator takes in two 3D arrays, performs the Ri-
cian deconvolution and then outputs the 3D deconvoluted
array. The results are collected to show the input stage
of one accelerator execution using our simulation platform.
Memory data is mapped to cache lines at the memory page
granularity to allow for previous optimization techniques,
such as hardware prefetching and page coloring, to be easily
adapted. As we can see from this figure, the accelerator gen-

Deblur
Denoise

Segmentation
Registration

EKF_SLAM Robot

BlackScholes
Swaptions

0%

20%

40%

60%

80%

100%

O
n-

ch
ip

 T
ra

ffi
c

Br
ea

kd
ow

n

accel <> buffer
buffer <> cache
buffer <> mem

cache <> mem
other traffic

Figure 3: Network Traffic Breakdown. Results are collected
on the baseline architecture described in Section 2. Details
about the benchmarks and setups of the simulation platform
can be found in Section 5.

Timeline
(a)

+7.439e5
0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

L2
C

ac
he

 B
an

k
Vi

si
te

d

Deblur

Timeline
(b)

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

BlackScholes

Figure 4: L2 cache bank access trace from the read phase
of Deblur and BlackScholes. A read to a cache bank is
depicted as a dot in the figure.

erates consecutive memory requests toward three L2 cache
banks. Since these requests have ideal spatial and temporal
locality, setting up a circuit-switched path would greatly im-
prove the throughput. Based on our observations, however,
this is not always the case for accelerators targeting different
domains.

Fig. 4(b) shows the access traces for BlackScholes from
the financial analytics domain [4]. The figure clearly shows
that the accelerator reads from six different banks that cor-
respond to six input arrays defined in the kernel. Unlike
Deblur, the BlackScholes accelerator only requests a small
amount of data from multiple cache banks. As a conse-
quence, setting up circuit-switched paths for all destinations
will not help to improve the overall performance since each
path is not extensively used to amortize the setup overhead.

Although Deblur and BlackScholes have different mem-
ory access patterns, both cases demonstrate that requests
are generated following predictable timings. Prior work also
proved that accelerator data streams have constant timing
intervals between consecutive requests [15].

Based on the above observations, we summarize that data
streams introduced by hardware accelerators often 1) ac-
count for a considerable portion of the total on-chip traf-
fic, 2) exhibit uninterrupted streams with different lengths
towards multiple destinations, and 3) generate memory re-
quests following constant timing. Previous optimizations on
packet-switched and hybrid-switched NoCs either add sig-
nificant per-hop delay to support streaming or fail to iden-
tify the pattern to improve circuit utilization. In light of
this, we propose global management combined with hybrid-
switching to deliver efficient and predictable NoC perfor-
mance to accelerator-rich architectures.

4. MECHANISM: HPR
We propose the hybrid network with predictive reserva-

tion (HPR) to exploit the accelerator memory access char-
acteristics to improve the network performance. The goal
is to maximize the benefit of circuit-switching data streams
while reducing the setup overhead and the interference with
packet-switched traffic. To achieve this goal, we propose
the global management to effectively identify the timing of
setup and teardown of circuit-switching paths, and the time-
division multiplexing (TDM) based hybrid-switching to pro-
vide efficient transmission with low overhead.

4.1 Global Management of Circuit-Switching
As described in Section 2, the global accelerator manager

(GAM) provides shared resource management and dynamic
load balancing. We extend the GAM to perform predic-
tive reservation (PR) of NoC resources for accelerators to
improve the throughput of the network.

The GAM is able to obtain information on the accelerator
type and the read/write sets from the task description sent
by a core before assigning the task to the accelerator. There-
fore, the latency of the accelerator can be easily obtained
and the possible read/write locations can be extracted by
performing address translations. Based on this information,
the communication pairs and the timing of communication
are known to the GAM without actually executing the task.

DMA Memory DMA Computing DMA Memory

time

1 2 3 4

Figure 5: The service timeline of one accelerator execution

Taking advantage of this knowledge, the GAM is capable
of scheduling a series of circuit-switched paths at the gran-
ularity of time slot for the accelerator. As Fig. 5 shows, at
the beginning of processing the task, the DMA engine issues
requests to memory interfaces, according to the read set, to
fetch the data to the buffer. After these requests arrive at
the memory interface, responses will be generated after the
access latency, which can be estimated for cache and mem-
ory. Once all data requests are fulfilled, the accelerator will
start to read from the input buffer and write to the out-
put buffer following the fixed latency. Then results will be
written back to the memory. As we can tell from the above
process, the latency of each stage is either constant or can
be estimated, which suggests that by identifying the timing
of the four stages shown in Fig. 5, and in turn providing
predictable circuit-switching transmission to traffic in each
stage, unpredictable factors in the accelerator execution can
be largely reduced.

To prevent conflicts in path reserving, the GAM tracks the
current reservation status of each router in the network using
a global reservation table. It searches the table for routes
and conflicts before sending out the setup message. The
XY-routing scheme is adopted for simplicity. If a conflict
is found in the table, the GAM will delay the targeted time
slots to the earliest available slots. Accordingly, future trans-
actions will be delayed as an aftermath of the conflict. As
we try to make reserved circuit-switched paths as transient
as possible, the probability of conflicts is minimized, and the
penalty of delayed reservation is also negligible. With the
global management of circuit-switching, the result of setups
can be guaranteed beforehand. Thus, no ACK message is re-
quired, thereby reducing network traffic and setup latency

of circuit-switched paths.
In the event that a TLB miss occurs during the read/write

session of an accelerator, the reserved circuit-switched paths
must be voided since they can no longer match the commu-
nication period, leading to performance degradation. To
combat this problem, we propose to translate the address
from the read/write set at the GAM, buffer corresponding
TLB entries and then send those entries to the accelera-
tor alongside the task description. As a result, the address
translation requests at the accelerator side will always hit
in the local TLB so that the accelerator is able to execute
to completion without TLB misses. In other words, the
TLB buffering mechanism eliminates the uncertainty in the
accelerator execution, providing the GAM with better esti-
mations of communication timings.

Example 1 shows a case for circuit-switched paths reserva-
tion to summarize the proposed global management scheme.

Example 1 Circuit-switched Paths Reservation

1: The GAM receives a task description from a core:
2: Perform buffer allocation
3: Extract memory addresses from read/write sets
4: for all physical address obtained from the read set do

5: Locate the L2 $ bank and the Memory controller
6: Try to reserve circuit-switched paths using XY-routing be-

tween the buffer, L2 cache bank and memory controller
7: if conflicts found then

8: Delay the time window
9: end if

10: Update local reserved route record
11: end for

12: Reserve circuit-switching paths for both read and write ses-
sion between the accelerator and the buffer

13: Do step 4 for the write set
14: Send the task description to the accelerator

4.2 Hybrid Network
We adopt a hybrid-switched router architecture similar

to [16, 29], as is shown in Fig. 6 and 7. To support the
2-stage hybrid-switched pipeline, the conventional 4-stage
virtual-channeled wormhole router is extended with circuit-
switched latches, a reservation table, and demultiplexers.

Ej

N

S

E

WCrossbar

Allocators

Inj

N

S

E

W

Reservation Table
Routing Unit

Figure 6: The hybrid-switched router architecture

BW
VA

SA
ST LT ST LT

(a) (b)

Figure 7: The packet-switched and circuit-switched pipeline

Once the setup decision is made by the GAM, a setup
flit carrying the reservation information will traverse the

planned path. This setup flit reserves consecutive time slots
for multiple future data streams sharing the same path (shown
in Fig. 8). To avoid multiple table entries occupied by the
same data stream, the reservation table is organized as each
entry corresponds to a future data stream – where a start
time, an end time, an input port and an output port are
recorded. The router uses the reservation table to configure
the switch in preparation for circuit-switching. By the com-
pletion of one circuit-switched session, the router recovers
to packet-switching mode, and the old table entry is freed
up to allow for new reservations.

StartTime EndTime InPort OutPort

200 208 1 3

StartTime EndTime InPort OutPort

201 209 1 3

Figure 8: An example of the reservation tables from two
neighboring routers

By the start of a reserved circuit-switched session, the
router needs to check the circuit field of the incoming flit
to determine if a data stream is arriving. Once a data
stream is confirmed, the router will forward incoming flits
directly to the switch that was already configured according
to the reservation. The packet-switched flits in the buffer
are not allowed to perform virtual channel allocation (VA)
and switch allocation (SA) until the end of the session. If
the circuit field is zero, this is a packet-switched flit which
means no data stream matches the reservation. The reason
for a missed reservation can be speculative schedules of cir-
cuit paths (i.e., miss-predictions of the data locations). As
a result, the current circuit-switched session will be aborted
and packet-switched flits are released to proceed to regular
pipeline stages.

In order for data streams to catch the reserved session,
the source and destination network interfaces are notified
of the reserved window as well. The source node will not
inject streaming flits to the NoC until the reserved session
has taken place. This is essential for memory interfaces with
variable latency (due to contention, scheduling policies, etc.)
because by doing so, a deadline is set at the source node
to bound the unpredictable memory latency. As a conse-
quence, uninterrupted streams can be generated to fully use
the reserved circuit-switched paths.

In summary, we propose HPR to effectively identify the
timing of data streams and speculatively reserve circuit-
switched paths to improve the throughput of the network.
Meanwhile, we design a hybrid network that allow the re-
served circuit-switched paths to tolerate variable memory
latency and provide predictable performance with minimal
interference to the packet-switched traffic.

5. SIMULATION RESULTS

5.1 Experimental Methodologies
We extended the full-system cycle-accurate Simics [20]

and GEMS [21] simulation platform and modified GAR-
NET [2] to model the baseline architecture described in Sec-
tion 2 and the proposed HPR scheme illustrated in Section 4.
We use Orion 2.0 [17] to estimate the power and energy con-
sumption of the NoC. We consider a 32-node mesh topology,
with one core, 30 on-chip accelerators and one GAM, with
parameters shown in Table 1.

The benchmarks used in our study are four benchmarks
from the medical imaging domain [6], two from the financial

Deblur
Denoise

Segmentation

Registration

BlackScholes

Swaptions

EKF_SLAM
Robot

LPCIP
gmean

0.6

0.7

0.8

0.9

1.0

1.1
N

or
m

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e baseline EVC HTDM HPR

(a) Normalized execution time (b) Normalized network latency

Deblur
Denoise

Segmentation

Registration

BlackScholes

Swaptions

EKF_SLAM
Robot

LPCIP

0.6

0.7

0.8

0.9

1.0

1.1

N
or

m
al

iz
ed

 E
ne

rg
y

baseline EVC HTDM HPR

(c) Normalized energy
Figure 9: Overall simulation results

Deblur
Denoise

Segmentation
Registration

BlackScholes
Swaptions

EKF_SLAM Robot
LPCIP

0

20%

40%

60%

80%

100%

C
irc

ui
t-s

w
itc

hi
ng

 C
ov

er
ag

e HTDM HPR

(a) Fraction of flits covered by circuit-switched paths

Deblur
Denoise

Segmentation
Registration

BlackScholes
Swaptions

EKF_SLAM Robot
LPCIP

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 N
et

w
or

k
La

te
nc

y

Baseline HTDM HPR

(b) Network latency of control messages
Figure 10: Network traffic results

analytics domain [4], and three from the robotics domain [1].
We extract the computation-intensive kernel functions from
these benchmarks and implement them as on-chip accelera-
tors. We used the high-level synthesis tool Vivado HLS from
Xilinx to generate the RTL of these computation-intensive
kernel functions, and used the Synopsys design compiler to
obtain ASIC characteristics of the accelerators.

Table 1: System parameters for the baseline architecture
NoC 4 × 8 mesh topology, XY routing,

wormhole switching, 4-stage router pipeline
Core 4 Ultra-SPARC III-i cores @ 2GHz

Coherence MESI directory coherence
protocol

L1 data & 32KB for each core, 4-way set-associative,
inst cache 64B cache block, 3 cycle access latency,

pseudo-LRU
L2 cache 2MB, 32 banks, each bank is 64 KB,

(static-NUCA) 8-way set-associative, 64Byte cache block,
6-cycle access latency, pseudo-LRU

Memory 80GB/s bandwidth, 280-cycle access latency

We compare the HPR scheme against a baseline packet-
switched NoC with four virtual channels, the express virtual
channel (EVC) [18] and a previously proposed TDM-based
hybrid-switched NoC for heterogeneous platforms [29] (de-
noted as HTDM below).

5.2 Experimental Results
Fig. 9(a) shows the comparison of normalized total exe-

cution time for each benchmarks against the baseline. HPR
reduced the total execution time by 11.3% over the baseline,
and 8.5% on average over EVC and HTDM. The largest re-
duction was seen for Deblur – about 20%. This is mainly at-
tributable to high traffic levels between the accelerator and a
small number of locations in the benchmark, leading to high
circuit utilization. LPCIP, on the other hand, represents a
relatively small read/write set with dynamic memory ac-
cesses defined during the execution. With GAM completely
oblivious to them, the dynamic accesses cannot be covered
by circuit-switched paths, and reserved paths also experi-
ence infrequent use due to unpredictable delay. As can be

seen from this figure, none of the evaluated schemes signifi-
cantly improve the performance.

Fig. 9(b) shows the normalized network latency for EVC
and HPR. EVC provides a consistent reduction in network
latency of about 15% since the mechanism aims to improve
the performance for all on-chip traffic and is oblivious to
the heterogeneity in network traffic. Meanwhile, the goal of
HPR is to provide efficient and predictable transmission for
accelerator data streams. As a consequence, HPR reduces
latency for the most critical part of the traffic, resulting in
lower overall average network latency.

Fig. 9(c) shows the normalized network energy for the
different benchmarks. Again, HPR shows energy reductions
over the compared schemes – a reduction of around 11% on
average going up to 16% for Deblur. In terms of LPCIP,
whereas HTDM suffers from underutilized circuit-switched
paths due to short dynamic accesses, HPR saves setup en-
ergy on dynamic accesses and still gains from predictively
reserved circuit-switched paths.

In trying to study this gain further, we analyze the circuit-
switching coverage of streaming flits with respect to the total
number of on-chip streaming flits (shown in Fig. 10(a)). As
shown in this figure, both HTDM and HPR provide rela-
tively high coverage of streaming flit. The reason that our
scheme achieves better performance is essentially twofold.
First, in setup of the same circuit-switched path, HTDM
requires the confirmation of an ACK message before trans-
mission, whereas our scheme eliminates the overhead by in-
troducing global management. Second, our scheme also aims
to identify and circuit-switch control messages (e.g., memory
requests) which account for a small portion of flits, but are
critical to the overall latency of memory access. In contrast,
previous schemes only target data movements. Fig. 10(b)
illustrates this effect by showing the normalized average net-
work latency for control messages. The largest reductions
were seen for Deblur, Swaptions and Robot, which receive
the largest reductions in execution time as well. This is be-
cause these reductions in network latency will in turn lead

to faster memory responses to the accelerator.

6. RELATED WORK
Accelerator Architectures: We classify on-chip acceler-
ators into two classes: 1) tightly coupled accelerators where
the accelerator is a functional unit that is attached to a
particular core - Garp [14], UltraSPARC T2 [22], Intel’s
Larrabee [24] are examples of this, and 2) loosely coupled ac-
celerators where the accelerator is a distinct entity attached
to the NoC and can be shared among multiple cores.

Our paper focuses on loosely coupled accelerators in a way
where accelerators can be shared between multiple cores.
VEAL [5] uses an architecture template for a loop accelera-
tor and proposes a hybrid static-dynamic approach to map
a given loop on that architecture. Polymorphic pipeline ar-
ray [23] uses an array of PEs which can be reconfigured and
programmed. Hou et al. [15] study the common characteris-
tics of the data streams introduced by on-chip accelerators.
By evaluating two extensions to the existing chip architec-
ture, the authors attempt to identify opportunities and chal-
lenges to initiate future research in this area.
Interconnection Networks: There is a large amount of
work focusing on improving the overall throughput. In con-
ventional packet-switched networks, deeper router pipelines
and buffers account for a significant portion of per-hop de-
lay and energy consumption. Kumar et al. [18] proposed
express virtual channels (EVC) in which intermediate nodes
are bypassed in order to remove the delay in the buffer write,
virtual channel arbitration and switch arbitration. However,
EVC is limited to small-hop data communication and incurs
significant overhead due to credit management.

Recent research proposes several interconnect designs us-
ing circuit-switched networks for on-chip data transfer. In
[27], circuit-switching paths are set up based on network
transaction handling. All data packets will not be trans-
ferred until the circuit-switched path is set up. Wolkotte
et al. [28] propose a reconfigurable circuit-switched network
for heterogeneous SoCs. Jerger et al. [16] explore hybrid-
switched networks where circuit-switched and packet-switched
flits share the same fabric. However, the reconfiguration of
circuit-switched paths is determined a setup network which
adds an additional plane to the network. [29] propose a time-
division multiplexing hybrid-switching NoC for CPU-GPU
heterogeneous platforms. Fine-grained time slot reservation
is implemented and paths sharing is introduced to improve
energy efficiency. However, due to the lack of global deci-
sion, the performance gains very little and even degrades in
some cases.

7. CONCLUSION
In this work, we propose the hybrid network with pre-

dictive reservation for accelerator-rich architectures to take
advantage of common characteristics of accelerator commu-
nication patterns. The global management of NoC resources
is proposed to predictively reserve circuit-switched paths for
accelerators based on the knowledge of location and precise
time period. The hybrid network is designed to provide effi-
cient and predictable transmission during the reserved time
period while reducing the interference caused to the packet-
switched traffic. The evaluations show that HPR can achieve
an average of 11.3% reduction in execution time compared to
the baseline packet-switched network and 8.5% compared to
EVC and a previous TDM-based hybrid-switched network.

Acknowledgments
We thank the anonymous reviewers for their feedback. This
work was supported in part by C-FAR, one of the six SRC
STARnet Centers, sponsored by MARCO and DARPA, and
by NSF/Intel Innovation Transition (InTrans) Grant awarded
to the Center for Domain-Specific Computing (CDSC).

8. REFERENCES
[1] “The mobile robot programming toolkit.” [Online]. Available:

http://www.mrpt.org/

[2] N. Agarwal et al., “Garnet: A detailed on-chip network model
inside a full-system simulator,” in ISPASS, April, pp. 33–42.

[3] A. Bakhoda et al., “Throughput-effective on-chip networks for
manycore accelerators,” in MICRO, 2010.

[4] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D.
dissertation, Princeton University, January 2011.

[5] N. Clark et al., “Veal: Virtualized execution accelerator for
loops,” in ISCA, 2008.

[6] J. Cong et al., “Customizable domain-specific computing,”
Design Test of Computers, IEEE, pp. 6–15, March 2011.

[7] J. Cong et al., “Architecture support for accelerator-rich cmps,”
in DAC, 2012.

[8] J. Cong et al., “Architecture support for domain-specific
accelerator-rich cmps,” ACM TECS, vol. 13, no. 4s, pp.
131:1–131:26, 2014.

[9] J. Cong et al., “Bin: a buffer-in-nuca scheme for
accelerator-rich cmps,” in ISLPED, 2012.

[10] J. Cong et al., “Optimization of interconnects between
accelerators and shared memories in dark silicon,” in ICCAD,
2013.

[11] C. F. Fajardo et al., “Buffer-integrated-cache: a cost-effective
sram architecture for handheld and embedded platforms,” in
DAC, 2011.

[12] H. Franke et al., “Introduction to the wire-speed processor and
architecture,” IBM Journal of Research and Development,
vol. 54, no. 1, pp. 3–1, 2010.

[13] K. Goossens et al., “Æthereal network on chip: concepts,
architectures, and implementations,” Design Test of
Computers, IEEE, vol. 22, no. 5, pp. 414–421, 2005.

[14] J. R. Hauser et al., “Garp: A mips processor with a
reconfigurable coprocessor,” in FPT, 1997.

[15] R. Hou et al., “Efficient data streaming with on-chip
accelerators: Opportunities and challenges,” in HPCA, 2011.

[16] N. D. E. Jerger et al., “Circuit-switched coherence,” in NOCS,
2008.

[17] A. B. Kahng et al., “Orion 2.0: A fast and accurate noc power
and area model for early-stage design space exploration,” in
DATE, 2009.

[18] A. Kumar et al., “Express virtual channels: Towards the ideal
interconnection fabric,” in ISCA, 2007.

[19] M. J. Lyons et al., “The accelerator store: a shared memory
framework for accelerator-based systems,” TACO, vol. 8, no. 4,
p. 48, 2012.

[20] P. Magnusson et al., “Simics: A full system simulation
platform,” Computer, vol. 35, no. 2, pp. 50–58, Feb.

[21] M. M. K. Martin et al., “Multifacet’s general execution-driven
multiprocessor simulator (gems) toolset,” SIGARCH Computer
Architecture News, 2005.

[22] U. Nawathe et al., “An 8-core, 64-thread, 64-bit, power efficient
sparc soc (niagara 2),” ISSCC, 2007.

[23] H. Park et al., “Polymorphic pipeline array: a flexible multicore
accelerator with virtualized execution for mobile multimedia
applications,” in MICRO, 2009.

[24] L. Seiler et al., “Larrabee: a many-core x86 architecture for
visual computing,” ACM Transactions on Graphics (TOG),
vol. 27, no. 3, p. 18, 2008.

[25] S. R. Vangal et al., “An 80-tile sub-100-w teraflops processor in
65-nm cmos,” Solid-State Circuits, vol. 43, no. 1, pp. 29–41,
2008.

[26] D. Wentzlaff et al., “On-chip interconnection architecture of the
tile processor,” Micro, IEEE, pp. 15–31, 2007.

[27] D. Wiklund et al., “Socbus: Switched network on chip for hard
real time embedded systems,” in IPDPS, 2003.

[28] P. T. Wolkotte et al., “An energy-efficient reconfigurable
circuit-switched network-on-chip,” in IPDPS, 2005.

[29] J. Yin et al., “Energy-efficient time-division multiplexed
hybrid-switched noc for heterogeneous multicore systems,” in
IPDPS, 2014.

