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Abstract
Resource under-utilization is a common problem in mod-
ern data centers. Though researchers have proposed consol-
idation techniques to improve utilization of computing re-
sources, there still lacks an approach to mitigate particu-
larly low utilization of storage capacity in clusters for on-
line services. A potential solution is to “interplant” a dis-
tributed storage system together with the services on these
clusters to leverage the unused storage. However, avoiding
performance interference with existing services is an essen-
tial prerequisite for interplanting. Thus, we propose InterFS,
a POSIX-compliant distributed file system aiming at fully
exploiting the storage resource on data center clusters. We
adopt intelligent resource isolation, peak load dodging, and
region-based replica placement schemes in InterFS. There-
fore, it can be interplanted with other resource-intensive ser-
vices without interfering with them, and amply fulfill the
storage requirements of small-scale applications in the data
center. Currently InterFS is deployed in 20,000+ servers at
Baidu, providing 80 PB storage space to 200+ long-tailed
services.
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1. Introduction
With rapid advance of Internet services, which include web
search, e-commerce, social networking, etc., the number of
services hosted in modern data centers keeps increasing. It
also results in an increasing demand for both computing re-
sources (e.g. processors and memory) and storage resources
(e.g. disks) employed in the data-centers. Unfortunately, the
utilization of these resources remains at a very low level in
many modern data centers. A recent investigation shows that
the total CPU utilization in Twitter’s and Google’s data cen-
ter stay at 20%–30% without significant improvement in the
past decade [4–6]. The current utilization of storage capacity
is about 33% in Baidu’s online-service clusters. Such low re-
source utilization poses a serious challenge on reducing the
total cost of ownership (TCO) of data centers [14]. For the
sake of the cost-efficiency, it is critical to improve the re-
source utilization in data centers.

One major reason for resource under-utilization is that
most Internet companies usually employ a huge number
of resources over-provisioned for many important services.
We call these services as high priority services, such as
web search, social networking news feeds, online ad rec-
ommendation, real-time anti-cheating analysis, etc. In order
to handle the peak traffic in the worst case, the total num-
ber of servers deployed is determined by the maximum re-
source demand in some special scenarios (e.g. World Cup
Final, Black Friday, DDoS attack). Over-provisioning for
the worst-case results in serious resource under-utilization
in normal working time. The storage utilization is especially
low for online processing clusters, usually less than 25% in
Baidu, since copious disks are installed in a single server
to comply with the IOPS requirement of the worst case.
The imbalance between disk throughput and storage capac-
ity commonly occurs in various data centers.

Recently, several approaches have been proposed to im-
prove utilization of computing resources (e.g. CPU and
memory) through co-locating a mix of services on the same
server [6, 10, 16]. However, how to improve the utilization
of storage capacity is not well addressed yet. In fact, it is
impractical to mix-deploy these high-priority services to im-
prove utilization of storage capacity. The major concern of



services co-location is about the quality-of-service (QoS).
Since most software of these services are developed without
considering resource sharing, resource competition cannot
be fully avoided even with careful management, especially
when multiple services on the same server enter the peak
traffic scenarios at the same time. Thus, it may result in sub-
stantial performance degradation.

Instead of mixing these services together, it is more prac-
tical to co-locate a special storage system with a primary
service on the same server. To minimize the interference, the
storage system should monitor run-time resource require-
ment of high-priority services so that it can adapt its own
storage service on this server to avoid resource competition.
At the same time, the quality of this storage service should
also be maintained in an acceptable level. To this end, the
storage system should only serve those applications with
low I/O throughput intensity. Interestingly, co-locating such
a storage system with high-priority services on the same
server is quite similar to the practice of interplanting two dif-
ferent crops, which are carefully selected to avoid competing
with each other.

Fortunately, we have observed that there exist a variety
of small-scale applications that can be served by this inter-
planted storage system, such as mobile apps and lightweight
web applications. They are named as “long-tailed” appli-
cations in this work. The reasons are explained as follows.
First, the data volume of one long-tailed application is nor-
mally relatively low, compared to other workloads. How-
ever, the total number of these long-tailed applications is
quite dominating (e.g. about 90% in Baidu’s data centers)
in a data center. An illustration is shown in Figure 1. For ex-
ample, most mobile apps need a backend in data centers to
store their data. Thus, the total data volume of these appli-
cations is still considerable (e.g. about 15% in Baidu’s data
centers). Second, the development and maintenance of most
long-tailed applications heavily rely on the usage of files. In
addition, they normally operate on small files and require
low I/O throughput. The breakdown of these long-tailed ap-
plications serviced by InterFS is also presented in Figure 1.
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Figure 1. Long-tailed applications.

Undoubtedly, these long-tailed applications require an
easy-to-use and reliable data-center-wide distributed file sys-
tem. On the other hand, the storage capacity utilization can
be improved if the distributed file system can be interplanted

with high-priority services with negligible interference. To
achieve a double-win, we have developed InterFS, a dis-
tributed file system that can be co-located with other work-
loads in online-processing clusters to improve the storage
utilization. The InterFS is almost POSIX-compliant, and
it is tailored for the access patterns of long-tailed applica-
tions: numerous small files, multiple-reads after an initial
write, etc. More importantly, we adopt intelligent resource
isolation, file server dodging, and replication placement
schemes in InterFS. Therefore, it can be interplanted with
other resource-intensive services and amply fulfill the stor-
age requirements of long-tailed applications in the data cen-
ter. Currently InterFS systems have been widely deployed
in 20,000+ servers at Baidu, providing 80 PB storage space
to 200+ long-tailed services. The largest one has over 6,000
nodes, 30 PB of storage capacity, and 90 million files.

2. System Overview
In this section, we first introduce basic features of InterFS
and its overall architecture.

2.1 Features
The design of InterFS follows several disciplines, which are
listed as follows,
• Interface: InterFS provides an almost POSIX-compliant

file system interface to its clients. Most of the Linux file
system APIs are supported, such as read, write, sync,
mkdir. Only few uncommon functions (e.g. truncate) are
not supported.

• Mixed Deployment: InterFS is designed to be inter-
planted with other high-priority services. Only the mas-
ter node requires a dedicated machine. It means that In-
terFS file server, the clients, and other online services
may run in the same server.

• File Size: Most files stored in the InterFS have relatively
small sizes. According to Baidu’s statistics, the percent-
age of files smaller than 1 KB is 49.3%, and only 0.8%
files are larger than 10 MB. The total number of files is
more than 10 million in this cluster. Unlike other file sys-
tems targeting large scale files (e.g. GFS [8]), InterFS is
designed to provide efficient process of small files. Thus,
for applications served by InterFS, the I/O throughput is
not our chief concern.

• Access Pattern: Although InterFS supports the random
access on files, the principal access pattern is the multi-
ple reads after an initial write, and the append write. The
number of opened files is very small (less than 1%) com-
pared to the total number of files for a cluster at a given
time. Thus, from the data-center-wide perspective, the
total amount of computing resources utilized by InterFS
is very low. This access pattern makes InterFS feasible
for interplanting.



• File Opening Mode: Considering the fact that a single
file opened for write by multiple applications is really
rare, InterFS only allows a single file to be opened once
for write by one client (application) at the same time.
This feature can be utilized as a global lock.

• Strong Consistency: Many long-tailed applications de-
sire strong consistency, which means once the file is suc-
cessfully written, all clients can read the contents of this
operation in real-time. InterFS provides the strong con-
sistency mode to make the distributed file system trans-
parent to long-tailed applications.

2.2 Architecture of InterFS
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Figure 2. InterFS system architecture.

As shown in Figure 2, an InterFS cluster is composed of
a single master node and multiple file server nodes. It can
be accessed by multiple clients, on which the long-tailed
applications are running. Only file servers and clients are
able to be interplanted with other high-priority applications
on the same server.

Similar to other single-master-based distributed sys-
tem (e.g. GFS), each file in InterFS has multiple replicas
(typically three) scattered on different file servers. Each
replica, contained in a file unit, is stored in a single file
server. Each file server contains multiple file units, the num-
ber of which relies on the disk space and memory capacity
available on this server. For example, five million files re-
quire less than 2 GB memory to store the metadata. There
is a file engine in each file unit, which is a storage engine
to flush the file unit to the local persistent storage. We reuse
the log-structured-merge tree (LSM-tree) based file engine
in the CCDB Table system of Baidu to simplify our de-
sign [13]. The file unit also takes care of replication.

As mentioned before, the sizes of most files stored on
InterFS are in the scale of several KBs. Thus, for these less
than 1 MB, each file only occupies the storage space equal
to its real file size. File stripping is also supported in InterFS.
When the file size is larger than a threshold α (default 1 MB),
each file is stripped into blocks with a maximum size of α.
Note that the last block less than alpha is not extended to

a “full block”. The block size can be adjusted dynamically
in the range of 1 ∼ 16 MB. Obviously, increasing the block
size can help reduce overhead of metadata. However, the I/O
pressure of transferring a block also increases at the same
time. This is the reason why the block size is limited to 16
MB, which is much less than those in other distributed file
system (e.g. GFS).

We minimize master’s involvement in data access to pre-
vent it becoming a bottleneck. The data never go through the
master. Instead, a client inquires of the master about the file
locations. It then contacts the file server directly for subse-
quent operations. Note that the mapping between file units
and blocks are not preserved in the master node. Because
each replica of the file is only stored in one file server, the
block mapping metadata are stored in the same file server.
Other types of metadata, such as mtime, ctime, file size, exe-
cution bit, etc., are also stored in the same node. This is rea-
sonable since the small files consist of few blocks. Such de-
sign provides several advantages: 1) It substantially reduces
the memory usage of master node; 2) Many metadata query
operations bypass the master and fall onto the file servers
to further reduce the pressure of master. We move the meta-
data operations on files, getattr, to file server and further re-
duce the total operations of master by 9% in the system; 3)
Since all read/write requests from clients are directly han-
dled by file servers, saving the other metadata like mtime,
ctime, file size in file servers will further avoid the interac-
tion with master.

The master maintains three types of metadata: the names-
pace, access control list, and the location information of file.
The namespace stands for the overall directory tree struc-
ture of the file system, and the location information is the
mapping from files to it replicas on file servers. The mas-
ters keep all metadata in memory, but all changes will be
persistently recorded. The reason is that InterFS is designed
for numerous small files in the online clusters. It is unac-
ceptable to take as long as ten minutes to gather location
information from thousands of the file servers after master
restarting. Master also manages the access control list and
checks the permission for each access.

In the following sections, we introduce detailed optimiza-
tion techniques to avoid interference in interplanting.

3. Optimization for Interplanting
In order to co-locate InterFS with high-priority services
without interference, we propose several optimization schemes,
which are introduced in this section.

3.1 Resource Isolation Scheme
InterFS uses an adaptive scheme of resource isolation, which
can dynamically adjust the threshold of each kind of re-
source in file servers according to the current load of file
servers and the service-level agreement (SLA) of services
co-located within the same server. There is a monitoring pro-



cess called file server agent to manage the file server daemon
process on each file server node. Isolation techniques for dif-
ferent resources on file servers are described as follows,
• CPU: InterFS uses taskset to bind its daemon process to

a specific CPU core. Since InterFS background process
is a storage service, it usually has little CPU usage and
can only occupy at most single core.

• Memory: Since the metadata is stored in the file server,
the memory usage is about several hundreds of MBs. We
use cgroup to set a limit on the total memory usage.

• Network bandwidth: InterFS adopts a speed limit ker-
nel module based on token bucket algorithm to restrict
total TCP traffics that file server generates. InterFS also
has the internal traffic control mechanism.

• Disk throughput: InterFS constantly monitors its through-
put. It employs a fine-grained token-based throttling
mechanism for disk throughput control. The tokens are
generated by file servers. A client needs to acquire a to-
ken before accessing files on a file server. The rate of
generating tokens is adapted according to the run-time
throughput. When the throughput reaches a threshold,
the client will not acquire a token but receive an error
message from the file server. Then the client will slow
down the rate of retry. This is a complete negative feed-
back process.

• Disk space: InterFS sets an individual quota for each
disk in file server. When the high-priority services on a
file server require more disk space, the rebalance process
will be triggered, and the file replicas of InterFS will be
migrated to another file server. When the disk space fall
below a threshold, the file server will be killed by file
server agent and the data on this server will be deleted.

• Number of inodes: When the number of inodes of a disk
exceeds a given limit, this disk is no longer used.

• Page cache: InterFS can be switched to no-caching
mode in which page cache provided by OS is bypassed
since some performance sensitive services require exclu-
sive usage of the page cache.

• Cross-data-center bandwidth: Although most of the
traffic is inside the cluster, InterFS also has a monitoring
module to restrict the cross-data-center bandwidth usage
to a safe range.

3.2 Peak Load Dodging Scheme
With the resource isolation schemes, InterFS limits the re-
source usage on the file servers to ensure the original high-
priority services function normally. However, the online ser-
vices may have unpredictable traffic occasionally. In such
scenarios with in-rush traffic, the InterFS file server will re-
linquish its resources to the high-priority service. The file
server will automatically revive after the peak traffic period
has passed.

After starting the file server, a file server agent watches
the overall load and resource usage in the background.
When it finds the resource usage is higher than a threshold
value (denoted as Thhigh) during several continuous sam-
pling windows, the agent will shut down the file server and
report the event to the master. Master will delay the recovery
procedure with other replicas in order to wait for the self-
recovery of this suicidal file server. When the agent notices
the resource usage is lower than a threshold value (denoted
as Thlow), it will restart the file server process and resume
the service.

If a file server uses the shutdown interface to dodge the
peak load, it will retain all status for fast recovery. If this
server is restarted during the period called surviving win-
dows, it can be fully restored to the original state without
notifying the master. The clients that use this file server
will only experience a small increase of latency, which is
very helpful for smooth upgrade. If this server does not re-
vive during this period, the master will redirect the affected
clients to other replicas and rebuild the replication chain for
future requests.

On the contrary, if a file server is terminated abnormally,
it cannot rejoin the cluster automatically. The file server
will try to intercept all exception signals and send the error
message to the master before it exits as far as possible. If
the master receives the abnormal status report from a file
server, or does not detect the HeartBeat message, the master
will regard this file server as dead and start the recovery
process. In InterFS, the recovery on a file server is divided
as two phases: metadata recovery phase and data recovery
phase. Only the metadata recovery phase will block the write
requests for a short time. During the data recovery phase,
the write request can be handled since the file engine is log-
structured.

3.3 Region-based Replica Placement Scheme

Region 1 Region 2
Region 3

(Trusted)

Figure 3. An illustration of region-based placement.

We observed that the activity patterns of the servers in
data center are diversified. The maintenance activities, such
as software updating, upgrading, machine restarting, or OS
reinstalling, are often conducted in the granularity of a prod-
uct line, i.e. the machines belong to the same product line
are usually operated simultaneously. Furthermore, the faults
caused by software bugs mostly affect servers of the same
product lines. Thus, if we locate all replicas in the machines



owned by the same product line, it may result in data loss
since all replicas might be down at the same time.

Thus, as shown in Figure 3, we group the machines into
regions, similar to fault domains, according to the product
lines. InterFS never puts all replicas in the same region.
Instead, it guarantees one region contains no more than one
replica of the same file. Consequently, data will be safe even
all machines in one region crash down.

Note that the availability of the region differs signifi-
cantly. Some regions have a higher availability than others.
We call them trusted regions. For a specified file, the client
can configure the number of replicas and how many regions
it should be distributed into. InterFS ensures that at least one
replica is allocated to a trusted region. For files frequently
accessed, we can allocate them to light-load or dedicated re-
gions.

Let pi denote the probability of failure in the ith region,
qi denote the conditional probability of each server failure
in this region. If we place three replicas in three different
regions, the probability that all three servers fail will be:

P1 =
∑

1≤i,j,k≤n
i 6=j,i 6=k,j 6=k

piqi · pjqj · pkqk(
n
3

)
If we keep all three replicas in the same region, the prob-

ability of failure will be:

P2 =

n∑
i=1

piq
3
i

n

We can easily prove that P1 < P2, which shows region-
based replica placement scheme has lower probability of
losing data.

When file units are created, master will select a proper file
server according to its available storage capacity, the number
of total replicas, and the region maps. The file server with
more idle resources has a higher priority. InterFS also has
a rebalancing mechanism to make the data volume and the
number of files on each file server remains balanced. Fur-
thermore, InterFS also tries to keep the number of primary
unit on each file server balanced so that the read requests are
distributed across the whole cluster uniformly.

4. Evaluation
In this section, we first describe our experimental setup for
evaluation of InterFS. Then we present basic evaluation re-
sults of InterFS without interplanting. After that, we mea-
sure the performance of InterFS under the circumstances of
mixed deployment. Finally we show real statistics numbers
from the production clusters used in data center of Baidu.

4.1 Experimental Setup
We measured performance on a InterFS cluster consisting of
one primary master, one secondary master, 19 file servers,
and up to 50 clients. All the machines are configured with

one 2.40 GHz Intel Xeon E5620 8-core processor, 32 GB
memory, ten 2 TB 7200 RPM disks, and 1 Gbps full-duplex
Ethernet connection.

4.2 Evaluation Results without Interplanting
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Figure 4. Aggregate throughput of InterFS with various
numbers of clients.

We first evaluate the performance of InterFS without in-
terplanting with other high-priority services. As shown in
Figure 4, we evaluate the aggregate throughput of InterFS
using different numbers of clients. Up to 50 clients download
(read) or upload (write) files simultaneously using InterFS.
The total size of data accessed is fixed at 10 GB. Data are
partitioned uniformly to multiple files (10 ∼ 1000) for dif-
ferent cases. Read and write performance is evaluated sepa-
rately. The maximum throughput is about 100 MB/s for both
read and write operations. We can find that InterFS has a lim-
ited throughput due to network and disk I/O limits brought
by the resource isolation schemes. Write performance is a
little bit lower than read performance due to overhead of
replication.

We then compare InterFS with two other distributed
file systems with POSIX-compliant interface, MooseFS [3]
and GlusterFS [1], in respect of performance under non-
interplanting circumstances. In other words, we compare the
maximum performance of these file systems. All experimen-
tal results are shown in Figure 5 for different file sizes and
client numbers.

Compared to MooseFS, InterFS outperforms MooseFS
when the file size is small (e.g. 50 B∼ 1 MB cases). InterFS
also achieves comparable performance for large file (1 GB
case). In fact, for the multiple client cases, InterFS cannot
beat MooseFS when all clients read the same file. However,
InterFS achieves better performance when the clients read
different files on different file servers. It is because a single
file must be located in the same file server in InterFS. Thus,
InterFS cannot benefit from concurrent block operations of
the same file over multiple servers like that in MooseFS.
When compared to GlusterFS, InterFS achieves better per-
formance for large files (1 MB and 1 GB).

We also measure the performance of InterFS’s namespace
operations and make a comparison with other distributed file
systems using a 20-node cluster. Figure 6 shows the meta-
data throughput (ops/sec) of the four common namespace-
related operations, including ls, rename, create, and delete.
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Figure 5. Comparison of performance without interplanting.
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InterFS outperforms other systems in this evaluation. The
ls operation that consists readdir followed by a stat of
each file is an extremely common access pattern for long-
tailed applications. There is an 1.83x speedup for InterFS
over the MooseFS since the master is carefully optimized
for queries of this type. On average, InterFS is 55% better
than MooseFS in terms of namespace operations. InterFS
achieves 2.75x higher metadata throughput than GlusterFS,
since it is slow for center-less distributed file systems to
modify the metadata across multiple machines.

To evaluate the recovery ability of InterFS, we record
the whole recovery process when a file server is forced to
shutdown. In real world system, there are about 0.5 million
files stored on this server. After the failed server is detected,
the total recovery time is less than 90 seconds. On average,
more than 5,500 files can be recovered in one second.

4.3 Evaluation Results with Interplanting
In this subsection, we analyze the performance result of In-
terFS, MooseFS and GlusterFS in interplanting cases. We
interplant these distributed file system with Memcached [7],
which is a well-known in-memory key-value store widely
used for online services, and LevelDB [9], a popular disk-
intensive key-value store. We use Memcached and LevelDB
to measure the impact of interplanting on network through-
put and disk throughput, respectively. A sample workload
extracted from Baidu’s online service is used to evaluate
these distributed file systems.

LevelDB’s throughputs in 6 benchmarks are shown in
Figure 7. The mixed deployment of LevelDB and InterFS
has only 11% degradation of throughput on average, while
the throughput of mixed deployment of LevelDB and MooseFS
is 47% less than LevelDB alone. The throughput is 45% less
in the mixed deployment with GlusterFS. Similarly, Figure 8
shows that the mixed deployment has a 10% degradation of
the overall performance of Memcached, while the results of
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MooseFS and GlusterFS are 51% and 60%, respectively. It
can be derived that InterFS has less interference of high-
priority services than that of other two systems.
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We also compare the effect of fixed threshold of the disk
throughput (Td) and network throughput (Tn) with the adap-



tive threshold in InterFS. Figure 9 shows that the adaptive
threshold achieves the best overall performance for one sin-
gle file server. Note that when the threshold of disk through-
put of InterFS is set to 50 MB/s, the total disk throughput
will exceed the warning level sometime. Therefore, the peak
load dodging mechanism is triggered and InterFS is shut-
down soon afterwards. In this case, the throughput of InterFS
is close to zero. The same trend on network throughput is
shown in Figure 10. They both prove that the dodging mech-
anism takes effect and make sure that high-priority services
can survive the peak pressure.

4.4 Statistics of InterFS in Real World
In this subsection, we provide real numbers for InterFS de-
ployed in the real data center of Baidu. Detailed statistics of
a typical InterFS cluster, such as number of nodes, number
of files, disk space, etc., are shown in Table 1. The real IOPS,
throughput and access latency are also presented.

File servers 556
Regions 11
Files 90 million
Available disk space 581 TB
Used disk space 388 TB
Total IOPS of file servers 20 283
Total throughput of file servers 808 MB/s
Average file access latency 0.47 ms

Table 1. Characteristics of a typical InterFS cluster.

Note that the space utilization of this cluster is 39.3%,
which is 6% more than the average level. It demonstrates
that InterFS can improve the storage utilization of data cen-
ter. The gain is made within 8 months after the deployment
of InterFS in this cluster. About 40 long-tailed applications
have migrated to InterFS platform. We believe that the uti-
lization will keep rising as more long-tailed applications em-
brace InterFS.

The number of InterFS operations over 24 hours on this
cluster is shown in Figure 11. We can find that master OPs
vary in the range of 2.2 to 4.5 million and file server OPs
vary in the range of 0.7 to 1.8 million. We can also observe
that the low request intensity happens during 3 pm and 11
pm.

The breakdown of operation in InterFS is shown in Fig-
ure 12. We can draw two conclusions. First, the lookup oper-
ation is dominating. Thus, it is worth applying optimization
on its processing. Second, we can tell that a lot of getattr op-
erations are offloaded from master to file servers. Note that
the labels mgetattr and fgetatter are getattr operations on
master and file servers, respectively.

Typical resource usage of file server in InterFS is shown
in Table 2. The low resource usage guarantees InterFS can
be interplanted with high-priority services.
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Figure 11. Number of InterFS operations in a real cluster.
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Figure 12. Breakdown of operations.

Resource Usage
CPU <10%
Memory <2 GB
Network bandwidth <15 MB/s
Disk throughput <30 MB/s

Table 2. Typical resource usage of InterFS file server.

5. Related Work
Resource Utilization Many researchers have investigated
strategies of improving resource usage of data centers.
The QoS for latency-critical workloads is studied in [10].
Quasar [6] is a cluster management system to increase re-
source utilization. Google proposes Omega [16], a scheduler
for large computing cluster. However, they mainly deal with
the CPU and memory utilization, but the storage capacity
has long been ignored.

Distributed File System Distributed file system has long
been studied. Examples include Coda [15], Ceph [18], and
Panassas [12]. GFS [8] proposed by Google and its succes-
sor HDFS [17] are highly optimized for Map-Reduce pro-
cessing. It does not support random file access and POSIX
interface. Ceph [18] presents a distributed file system us-
ing a hash-based distribution scheme which does not have
a centralized node for improving the scalability, but this also
makes its structure very complex and hard to deploy in pro-
duction environment. Panassas [12] moves the RAID check-
sum computation process to the clients to reduce the pressure
on storage nodes. Lustre [2] uses a distributed lock manager
protocol in which clients, OSS, and the metadata manager
all participate. Boxwood [11] provides a B-tree implemen-



tation, but the design favors strict consistency over scalabil-
ity, limiting the scale to a few tens of machines. However,
none of these systems take the resource sharing issues into
account, which is our main design goal.

6. Conclusion
In order to improve storage space utilization of clusters run-
ning online services, we propose a distributed file system
called InterFS. Compared to other file systems, the major ad-
vantage of InterFS is that it can be interplanted on these clus-
ters without interfering with high-priority services. Because
of this, only carefully selected applications can be served
on InterFS. In real world, we find that there exist a lot of
long-tailed applications, which are suitable for leveraging
InterFS. Consequently, InterFS can significantly improve the
storage space utilization in data centers. Now, InterFS has
been widely deployed in Baidu’s data centers.
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