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Abstract—The power and utilization walls in today’s processors
have led to a recent focus on accelerator-rich architectures
(ARAs), which include a sea of customized accelerators with
orders-of-magnitude performance and energy gains. Meanwhile,
some researchers wonder how the reported large gains are
achieved, considering that ARAs use a similar memory hierarchy
to conventional processors.

In this paper we conduct an in-depth analysis of ARAs with a
key focus on the memory access component not studied in prior
work. Based on our experimental results, we observe that ARAs
achieve performance gains from both computation and memory
access customization. For computation customization, ARAs not
only exploit the coarse-grained parallelism as conventional pro-
cessors do, but also uniquely customize a deep processing pipeline
without instruction overhead. For memory access customization,
ARAs exploit a tile-based read-compute-write execution model
that both reduces the number of memory accesses and improves
the memory-level parallelism (MLP). We quantitatively evaluate
the performance impact of such factors and surprisingly find
that 1) memory access customization plays a bigger role in
the performance improvement than computation customization,
and 2) the dominating contributor to the ARA memory access
performance improvement is the improved MLP rather than
the widely-expected memory access reduction. Indeed, we find
that existing GPU accelerators also benefit from the improved
MLP through different techniques. The unique customized deep
processing pipeline of ARAs further provide an average of 1.4x
speedup over GPUs. Moreover, on average, ARAs are 18x more
energy efficient over GPUs. We hope this understanding can help
future ARA design and adoption.

I. INTRODUCTION

General-purpose processor scaling has been inhibited by
the power and utilization walls [11] which limit the on-
chip components that may be used simultaneously. To ad-
dress this challenge, researchers have integrated more and
more specialized energy-efficient accelerators onto a single
chip [5, 6, 8, 14, 16, 17, 20, 21, 23] by loosely coupling the ac-
celerators with the processor. This new architecture is referred
to as the accelerator-rich architecture (ARA) [5, 6, 8, 23],
which features a sea of heterogeneous dedicated or more
flexible composable accelerators targeted for a wide domain of
applications. In addition, to make ARAs more programmable,
the accelerators and CPU cores are designed to share a
coherent cache memory hierarchy with shared last-level cache
and off-chip DRAM.

Prior studies claim that such ARA architectures can achieve
orders-of-magnitude performance and energy gains compared
to conventional general-purpose CPUs due to customization.
To validate this, we model the ARA proposed in [5, 8]: We
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Fig. 1: Performance speedup of an ARA over a general-purpose CPU.

model a modern X86 architecture instead of the 10+ year-
old SPARC architecture modeled in [8] and a detailed experi-
mental setup is described in Section II. Since both ARAs and
conventional processors can exploit coarse-grained parallelism
and it is straightforward to compare this parallelism, here we
compare a single accelerator processing element (PE) to a
single general-purpose core. (We will compare multi-PE ARAs
and many-core GPUs later in Section IV.) In our experiments,
we observe a performance gain ranging from 6x to 130x, with
an average of 18x, as shown in Figure 1.

Meanwhile, we profile the execution time of computation-
only and non-overlapped memory access components in a
single-core CPU using the experimental setup in Section II. As
shown in Figure 2, on average, around 51% of the execution
time is spent in the memory access that cannot be overlapped
by the computation. With this data in mind, one key question
plaguing some researchers is: how can such an ARA achieve
an average of 18x performance speedup using customized
accelerators, but with a cache memory hierarchy similar
to the one used in conventional processors?

Unfortunately, no detailed analysis has been performed in
these prior studies to satisfactorily explain how the enormous
performance gains are achieved in ARAs. Therefore, our goal
is to detail a quantitative analysis of factors that lead to
such big performance gains and to provide insights into
future ARA research and design. With an in-depth analysis,
we find that ARAs not only customize the computation, but
also customize the memory access which is often overlooked
in prior work. In fact, 8 out of 12 benchmarks get more
performance gains from the memory access customization than
the computation customization. On average, ARAs get 15x
speedup over CPUs in the computation, and 25x speedup in
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Fig. 2: Performance breakdown of a conventional CPU.

the memory access.

On one hand, the computation customization gets perfor-
mance gains from the following factors.

1. ARAs exploit fine-grained parallelism in the application
that is similar to CPU SIMD instructions but is more
flexible, since they do not need to be always 4-way, 8-
way, or 16-way aligned and do not need extra instructions
for data gathering/scattering.

2. ARAs customize a deep processing pipeline for each ap-
plication (or application domain) by chaining all functional
units (FUs) together and get rid of the CPU instruction
overhead. As a result, it can achieve a high pipeline
throughput with almost full pipeline utilization. This is a
unique feature of customized accelerators over instruction-
based processors.

Typically, this customized processing pipeline is tightly
coupled with the fine-grained parallelism: each pipeline
stage may exploit the fine-grained parallelism to enable
the high-throughput deep pipeline. By combining them
together, ARAs with a single PE can achieve a computation
speedup of 1.5x to 187x, compared to a single-core CPU.

3. ARAs can also exploit coarse-grained parallelism by dupli-
cating the customized processing pipeline (typically called
PE). Since the accelerator pipeline is application-specific,
it is much more efficient in terms of area and power
consumption (data shown in Table I) and thus more scalable
than multicore CPUs.

On the other hand, the memory access customization gets
performance gains from the following factors.

1. ARAs reduce the total number of memory accesses through
various techniques such as data tiling, loop fusion, data type
quantification, and even algorithm-level changes. However,
we find that most of such techniques can be equally applied
to the software programs on CPUs as well. The gap of
memory access numbers between ARAs and optimized
applications running on CPUs are rather marginal.

2. ARAs significantly improve the memory-level parallelism
(MLP) by aggregating all the data accesses into a short
time period, which is done through a customized tile-based
read-compute-write execution model for ARAs detailed in
Section III-B. As a result, ARAs can hide the latency of
more memory accesses.

We find this improved MLP, rather than the widely-
expected memory access reduction, is the dominating con-
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Fig. 3: An overview of the accelerator-rich architecture.

tributor to the performance speedup in the ARA memory
access component. ARAs with a single PE can achieve 7x
to 84x speedup for the memory access customization, com-
pared to a single-core CPU with the software optimizations.

Finally, we also compare multi-PE ARAs to many-core
GPUs accelerators, which usually improve the performance
of regular applications with abundant data parallelism through
single-instruction-multiple-threads (SIMT) execution. Indeed,
GPUs also improve the MLP through SIMT and warp schedul-
ing. However, ARAs have one unique advantage: it can
customize the processing pipeline for irregular application
without instruction overhead. On average, the ARA with 16
PEs achieves 1.4x speedup over the GPU with 16 streaming
multiprocessors (SMs). Moreover, on average, the ARA is
about 18x more efficient than GPU in terms of performance
per watt. We hope this understanding will ultimately clear the
mist and accelerate the adoption of ARAs.

II. BACKGROUND

To better understand and evaluate an accelerator-rich archi-
tecture (ARA), we first give an overview of the ARA archi-
tecture proposed in [6, 7, 8] and describe how applications
are executed on it. We then describe the detailed experimental
setup used throughout this paper. Detailed GPU setup will be
presented in Section IV.

A. Accelerator-Rich Architecture (ARA)

Figure 3 presents an overview of an ARA [4, 8]. In addition
to a number of CPU cores, there is a sea of customized
heterogeneous accelerators. To achieve high performance, each
accelerator uses a software-programmed scratch-pad memory
(SPM) and communicates with the cache memory hierarchy
using a direct memory access (DMA) engine. To efficiently
manage these accelerators, a hardware global accelerator
manager (GAM) is provided. GAM also maintains a global
translation lookaside buffer (TLB) that can translate the virtual
addresses of accelerators to physical addresses. Furthermore,
in order to provide high bandwidth to the accelerators, there
are a number of last-level cache (LLC) banks and DRAM
controllers that are coherent and shared by both the CPU
cores and accelerators. Finally, a customizable network-on-
chip (NoC) is used to connect all the components.

To minimize the programming efforts of using ARAs, the
hardware accelerators are abstracted as libraries to users, and
a library-based accelerator programming technique is used.
The application is initially running on the CPU. Whenever
it calls an accelerator library, the CPU will query the GAM
about the wait time for all needed accelerators. In addition, the



TABLE I: Benchmark descriptions with input size and number of heterogeneous acceler-
ators (# of Accs) with different functionalities, accelerator area and power consumption.

Domain Application Input Size # of
Accs

Area of
Acc (mm2)

Power of
Acc (mW)

Medical
Imaging

Deblur (deb)
1 image of size
128*128*128

4 2.01 110.90
Denoise (den) 2 0.50 16.50
Registration (reg) 2 3.85 183.90
Segmentation (seg) 1 0.69 27.30

Commercial
from Parsec

BlackScholes (bsc) 256K datasets 1 2.61 51.60
StreamCluster (stc) 64K 32-dimension streams 5 0.19 4.94
Swaptions (swap) 8K datasets 4 25.17 433.80

Computer
Vision

LPCIP Desc (lpcip)
128K features from

1 0.48 10.10
1 image of size 640*480

Texture Synthesis (tsyn) 16 images of size 512*32 5 1.05 29.80

Computer
Navigation

Robot Localization (robl) 128K sensor datasets 1 6.43 119.00
Disparity Map (dmap) 2 images of size 64*64 3 0.48 12.27
EKF SLAM (slam) 128K sensor datasets 2 62.15 951.00

TABLE II: Basic parameters of the simulated 64-
bit X86 CPU architecture and ARA.

Technology node 32nm

CPU frequency 2.0GHz

CPU core 8-issue X86 64 OoO core

1-core area 26.85 mm2

Accelerators refer to Table I

Coherence protocol 2-level MESI

L1 cache
private to CPU core, 32 KB,
2-way associate, 2 cycles

L2 cache
shared, 2 MB, 32 banks,
8-way associate, 20 cycles

NoC topology 4*8 Mesh

DRAM 4 512MB 1600MHz DDR3

Simulated OS Linux kernel 2.6.22.9

GAM will decompose the virtual accelerator library into basic
hardware accelerators and estimate the computation delay for
each. Based on this information, the CPU will decide whether
to use the accelerators or not, and if yes, ask the GAM to
reserve those accelerators for execution. The accelerator will
notify the CPU through a lightweight interrupt (LWI) [8] once
it finishes its job. A few X86 instructions are extended in
the CPU to provide the aforementioned CPU-GAM-accelerator
control logic [4, 8].

B. Experimental Setup
To make the comparison between the CPU and ARA simple

and fair, we mainly consider a single core and a single ac-
celerator processing element (PE), unless otherwise specified.
Note that although we can increase the number of CPU cores,
we can also increase the number of accelerator PEs, which is
even more performance, area and power efficient, as shown
in Table I. To keep the comparison complete, we will also
compare an ARA against a GPU in Section IV.

We summarize the basic parameters of the baseline 64-bit
X86 CPU architecture and the accelerator-rich architecture
(ARA) in Table II, which is similar to that used in [4, 8].
Both architectures are targeted for a 32nm technology node;
each dedicated accelerator is a 32nm ASIC. The baseline X86
architecture has one 8-issue out-of-order core at 2GHz with
private 32KB L1 instruction and data cache. Each application
has a number of dedicated accelerators (but just one PE of each
accelerator), as shown in Table I. All cores and accelerators
share a 2MB L2 cache (i.e., LLC) that is divided into 32
banks for bandwidth consideration. We use a small L2 cache
size to avoid unintended cache warm-up effect (i.e., to avoid
that all data are already in the LLC cache) after application
initialization. A coherent cache hierarchy using the MESI
protocol is maintained for all the cores and accelerators. Four
DDR3 memory controllers are provided; each DRAM size is
512MB. Finally, all the components are connected together
through a 4*8 mesh NoC. Both the X86 CPU architecture
and ARA are simulated using the open-source cycle-accurate
PARADE [4] simulator that extends the widely used gem5 [1]
simulator with high-level synthesis support [9] to accurately
model the accelerator part.

To provide a quantitative analysis of the performance gains
of the ARA, we use a wide range of applications that are
similar to those used in [4, 8]; we omit the detailed description
of each application due to space constraints and refer the
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Fig. 4: Normalized execution time of the computation and memory
access in ARA compared to CPU.

audience to prior work [4, 8]. They are mainly from four
diverse important domains: medical imaging, computer vision,
computer navigation, and commercial benchmarks from PAR-
SEC. All benchmarks are compiled using the gcc compiler
with the -O3 option (SIMD options enabled). As shown in
Table I. We choose our input size such that it exceeds the LLC
capacity but still has an affordable simulation time. For each
application, we also list the number of dedicated accelerators
with different functionalities, the accelerator area and power
consumption. In total, we have 29 different heterogeneous
accelerators (Deblur and Denoise share a racian accelerator;
Deblur and Registration share a gaussian accelerator).

III. ANALYSIS OF PERFORMANCE GAINS

To understand the big performance gains achieved in the
accelerator-rich architecture (ARA), we divide the total execu-
tion time of the program into two parts: 1) computation-only;
2) non-overlapped memory access. To get the computation-
only time for the CPU version, we change the simulation setup
to model a perfect cache: a large enough last-level cache (LLC)
to hold all the program data after warm-up with 1-cycle access
latency. For the ARA version, we can get the computation time
directly due to the simple read-compute-write pattern that will
be explained in Section III-B. The non-overlapped memory
access time is calculated by subtracting the computation-only
time from the total time.

As mentioned in Section I, Figure 2 presents the execution
time percentage for the CPU baseline (all results use a 1-
core CPU baseline unless otherwise specified). Correspond-
ingly, Figure 4 presents the execution time percentage for the
ARA version with a single processing element (PE) of each
accelerator (all results use a single PE of each accelerator
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unless otherwise specified), which is normalized to the CPU
baseline. By comparing Figure 2 and Figure 4, we observe that
the ARA not only achieves an average speedup of 15x over the
CPU in the computation, but also achieves an average speedup
of 25x in the memory access. Detailed ARA computation
and memory access speedup results are further presented in
Figure 6.

In this section we provide an in-depth analysis of how ARAs
achieve such computation and memory access improvements
through customization. Since the computation customization
has been analyzed in a prior case study for the H.264 encoder
accelerator [13], in this paper we focus more on the memory
access customization not studied before.

A. Computation Customization

We start with the customized computation pipeline that
is widely used in accelerator designs to achieve high per-
formance [13]. We demonstrate this using the computation-
intensive kernel in the Denoise benchmark. As shown in
Figure 5, the core computation of this kernel is a stencil com-
putation. Figure 5 also illustrates the customized computation
pipeline for this kernel, which has three major advantages over
a conventional general-purpose CPU.

1. It exploits fine-grained parallelism for operations such as
subtraction and multiplication in the customization. While
a CPU can also exploit this fine-grained parallelism using
SIMD, SIMD instructions are usually 4-way, 8-way, or 16-
way aligned. In addition, they need extra instructions for
data gathering and scattering between scalar and vector
registers in the CPU. Therefore, ARAs have more flexibility
to exploit fine-grained parallelism than CPUs. Note that all
CPU results used in this paper have the SIMD optimization
enabled in the compiler.

2. It customizes the processing pipeline and gets rid of
the CPU instruction overhead. In a general-purpose CPU
pipeline, there is significant overhead in non-executing
stages such as instruction fetching and decoding [13]. In
addition, if there is a long data dependence chain, there
is only one functional unit (FU) working and all others
are wasted. To gain a better understanding, we analyze the
distribution for the number of instructions issued per cycle
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Fig. 6: Computation and memory access speedup of ARA over CPU.

in the CPU pipeline: about 43.5% of the time there is no
instruction issuing in the CPU pipeline, and the average
number of instructions issued per cycle is only 1.7 in an 8-
issue CPU pipeline. In contrast, in a customized accelerator
pipeline, it is almost about the chaining of all FUs (each FU
is pipelined as well) the application uses; and each pipeline
stage exploits the fine-grained parallelism of FUs as well. In
addition, there is no extra (e.g., load and store) instruction
for the data movement between the instruction registers and
cache memory hierarchy. Typically, the accelerator pipeline
can achieve a pipeline initiation interval (II) as low as 1
for pure computation. As long as there is input fed into the
pipeline, it can process one input each II cycles (fully utilize
the pipeline), e.g., II=1 in this Denoise example. This cus-
tomized processing pipeline is a unique advantage of ARAs
over instruction-based processors. From this analysis, we
can infer that programs with long program dependency and
long-latency computing operations are potential candidates
for customized acceleration.

3. It can also exploit the coarse-grained parallelism by dupli-
cating this customized processing pipeline. Since the accel-
erator pipeline is application-specific (or domain-specific),
the pipeline logic is much simpler, and uses much less area
and power than that of a general-purpose core, as shown
in Table I. As a result, it is easier to scale than multicore
CPUs. In this section we do not consider this coarse-grained
parallelism and we leave its evaluation in Section IV.

In summary, the performance speedup of customized com-
putation comes from a unique combination of fine-grained
parallelism and customized processing pipeline, as well as
widely used coarse-grained parallelism. As shown in Figure 6,
the speedup of a single processing element (PE) accelerator
over a single-core CPU ranges from 1.5x to 187x depending
on the application, with an average of 15x. For the Denoise
example, it has a speedup of 6.1x. For benchmarks with sim-
ple computation operations (communication-intensive) such
as StreamCluster, it has a speedup of 1.5x. For benchmarks
with long computation latency like BlackScholes and bench-
marks with abundant fine-grained parallelism like Swaptions,
the computation customization can improve the computation
performance up to two orders-of-magnitude.

B. Memory Access Customization

ARAs achieve the large speedup not only in the computation
component, but also in the memory access component. As



0

1

2

3

4

deb den reg seg bsc stc swap lpcip tsyn robl dmap slam avg

Medical Imaging Commercial Vision Navigation

M
em

or
y 

ac
ce

ss
 r

ed
uc

tio
n 

of
 A

R
A

11.5x5.5x

1.5x

0.2x

(a) Memory access reduction before CPU optimization

0

1

2

3

4

5

6

seg lpcip tsyn dmap

N
or

m
al

iz
ed

 #
 o

f m
em

or
y 

ac
ce

ss

SW SW-Opt ARA

11.5x

(b) Optimized memory access

0

10

20

30

40

seg lpcip tsyn dmap

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

SW SW-Opt ARA

1x

(c) Optimized memory runtime

Fig. 7: Memory access reduction of ARA before and after CPU optimization.
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Fig. 8: Memory access customization in ARA.

shown in Figure 6, the memory access customization achieves
a speedup ranging from 7x to 178x depending on the appli-
cation, with an average of 25x. In fact, 8 out 12 benchmarks
have higher speedup in the memory access customization than
in the computation customization.

To better understand how such memory access speedup is
achieved, we take a closer look at how customized accelerators
are executed. As illustrated in Figure 8, it exploits a tile-based
three-stage read-compute-write execution model for a single
accelerator processing element in an ARA. To achieve better
on-chip data reuse, the entire input data for an accelerator is
tiled into multiple data tiles (Y axis) in order to fit the data into
the on-chip scratchpad (SPM) of the accelerator.1 For each tile,
the execution is split into three stages (X axis). First, the entire
input data tile of the accelerator is loaded into the scratchpad
before the computation. Second, the computation is done using
all local data in the scracthpad. Third, the entire output data
tile in the scratchpad is written to the shared LLC and memory.
To achieve better performance, different data tiles (i.e., tasks)
that are fed into the pipeline further overlap their computation
and memory access (read and write).

This memory access customization in ARAs gives two
performance advantages.

1Unlike the specific macro-blocks representing different computing kernels
for pipeline processing [13], we look into the tiles for each computing kernel
and analyze their generic memory access behavior.

1. It can reduce the total number of memory accesses as the
data tiling technique can improve on-chip data reuse. In
this paper we focus on the off-chip memory access, i.e.,
last-level cache miss, which is the dominating contributor
to the data access time compared to the on-chip data
access. The memory access reduction will be quantified in
Section III-B1.

2. It can improve the memory-level parallelism (MLP) by
aggregating all the data accesses in a tile into a short
period of time in read and write stages, which are further
overlapped with each other. As a result, it can hide (overlap)
more memory accesses to improve the performance, which
will be quantified in Section III-B2.

1) Memory Access Reduction: We quantify the impact of
memory access reduction in Figure 7a, which shows the
reduction of the total number of memory accesses in the
ARA compared to the CPU. While memory access reduction
is believed to be a major contributor to the performance
improvement, surprisingly, we find that only 4 out of 12
benchmarks benefit from this. For the Swaptions benchmark,
actually it is even increased 5x due to the algorithm-level
changes in the accelerator customization that needs larger
memory footprint.

Moreover, we find that we can also apply the same op-
timizations in the software programs on the CPU for the
four benchmarks that the ARA has significant memory access
reduction, including Segmentation (seg), LPCIP Desc (lpcip),
Texture Synthesis (tsyn), and Disparity Map (dmap). For the
seg benchmark, we apply the data tiling technique; for the
lpcip benchmark, we apply the floating-to-fixed data type
transformation; for the tsyn benchmark, we apply the loop
fusion technique; and finally for the dmap benchmark, we
apply the algorithm-level changes to remove some of the
intermediate data arrays (some of them are hard to eliminate
in CPU due to the instruction-based execution).

Figure 7b compares the number of memory accesses in
ARA and CPU before and after these optimizations (noted
as “SW” and “SW-Opt” bars) for the above four benchmarks.
The number is normalized to the ARA version. After these
optimizations, the difference of number of memory accesses
is pretty small between the ARA and CPU versions. The only
exception is the Disparity Map benchmark that still has 2x
difference, due to some intermediate data array accesses in
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the CPU. Figure 7c also shows the corresponding execution
time, which is normalized to the ARA version. Even after
these optimizations, the performance gap between the CPU
and ARA is still pretty large.

In summary, the memory access reduction is not the key
for the accelerator performance improvement over the CPU, as
the ARA and CPU have similar number of memory accesses
after the software programs are optimized.

2) Improved Memory-Level Parallelism (MLP): In this sub-
section we quantify the impact of the improved MLP by
comparing how many last-level cache Misses (i.e., memory
accesses) can be hidden Per Kilo Cycles (hidden MPKC) in
both the CPU and ARA versions. As shown in Figure 9, all
benchmarks benefit from the improved MLP and the ARA can
hide one to two orders-of-magnitude more memory accesses
compared to the CPU. On average, the CPU can only hide 2.6
MPKC while the ARA can hide 47 MPKC.

We attempt to apply the same technique to the CPU version
by prefetching the entire tile before performing the computa-
tion, but find it is difficult to improve the performance of the
CPU version. There are two reasons behind. First, CPUs have
to pay extra instruction overhead for prefetching the tile (one
cache line at a time), which significantly offsets the benefits.
Second, as opposed to the software-managed scratchpad used
in accelerators, conventional general-purpose processors use
hardware-managed caches. As a result, software programs on
CPUs have no control of the prefetched data in hardware
caches, which can unexpectedly pollute (and be polluted by)
other data accesses.

In summary, the key contributor to the memory access
performance improvement is the improved MLP rather than
the widely-expected memory access reduction (both CPU and
ARA versions have similar number of memory accesses),
which needs more attention from the community. In addition,
this improved MLP in ARAs also proposes new requirements
of future ARA designs: there needs more memory controllers
with higher off-chip memory bandwidth and more on-chip
cache banks to host more outstanding accesses.

IV. COMPARISON TO GPU

We also compare the multi-PE (processing element) ARA
to existing many-core GPU accelerators, which can parallelize
the computation and improve the memory-level parallelism

(MLP) as well. We first describe the experimental setup used in
this comparison. Then we compare the overall speedup, hidden
MPKC improvement, and performance per watt improvement
of the ARA and GPU.

Experimental setup. To perform a fair comparison, we
model an integrated CPU and GPU architecture on a single
chip using gem5-gpu [22]. The CPU core configuration is
the same as that used in the ARA. We simulate a GPU
similar to the Nvidia GeForce GTX 580 model. It includes
16 streaming multiprocessors (SMs) and each SM includes 32
SIMT cores, that is, there are 512 cores in total. According
to the work in [12], each SM consumes around 16 mm2,
which is usually larger than the area of a single accelerator
processing element (PE). To be fair, we also use 16 PEs of
each heterogeneous accelerator in the ARA configuration by
exploiting the coarse-grained parallelism. The detailed GPU
configuration is described in Table III. For this comparison,
we implement all benchmarks using CUDA 3.2. We use
GPUWattch [19] to simulate the GPU power consumption.

TABLE III: Basic parameters of the CPU-GPU architecture: the GPU
is similar to the Nvidia GeForce GTX 580 model.

Technology node 32nm

GPU frequency 700 MH

GPU cores
16 streaming multiprocessors (SMs), and
32 SIMT cores within each SM

1-SM area 16 mm2 [12]

Register files 32K per SM

Shared memory 48KB per SM

L1 cache
64KB private to each SM,
4-way associate, 2 cycles

L2 cache 1MB shared, 16-way associate, 20 cycles

DRAM
1GB GDDR5,
model from Hynix H5GQ1H24AFR

Overall speedup. First, we present the overall speedup of
the ARA with 16 processing elements (PEs) of each acceler-
ator, and the GPU with 16 streaming multiprocessors (SMs).
GPU accelerators usually improve the performance of regu-
lar applications with abundant (fine-grained) data parallelism
through single-instruction-multiple-threads (SIMT) execution.
As shown in Figure 10, the GPU with 16 SMs achieves 22x
to 364x speedup compared to the optimized single-core CPU,
with an average speedup of 68x. While the ARA with 16
PEs achieves 22x to 656x performance speedup compared
to the optimized single-core CPU, with an average speedup
of 94x.2 Even compared to the GPU, the ARA achieves
up to 1.9x speedup, with an average speedup of 1.4x. This
is mainly achieved through the unique feature of ARAs:
customized processing pipeline (coupled with irregular fine-
grained parallelism) without instruction overhead.

Hidden MPKC improvement. GPUs are well-known for
providing high off-chip memory bandwidth, or high memory-
level parallelism (MLP). We also profile the hidden MPKC
(misses per kilo cycles) of the ARA with 16 PEs and the GPU
with 16 SMs. As shown in Figure 11, they have comparable
memory-level parallelism. However, the sources of such MLP
improvement are different for the ARA and GPU. For the

2Note that the performance of the ARA with 16 PEs does not scale linearly
compared to that with 1 PE, mainly because the memory bus bandwidth
becomes a new bottleneck.
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ARA, it mainly comes from the tile-based read-compute-write
execution model as explained in Section III-B. For the GPU,
it comes from the SIMT technique together with its warp
scheduling: for each instruction, it issues multiple memory
accesses simultaneously, and different warps can issue multiple
memory accesses as well to hide the memory access latency.

Performance per watt improvement. While the perfor-
mance gap between ARAs and GPUs is not so significant,
ARAs are much more power efficient than GPUs due to
the computation and data customization. We also present the
performance per watt improvement for the ARA with 16
PEs over the GPU with 16 SMs in Figure 10. Compared to
the GPU, the ARA is 7x to 31x more efficient considering
performance per watt, with an average improvement of 18x.

Summary. In summary, the improved memory-level par-
allelism also applies to GPU accelerators (through different
techniques than ARAs). The key differences are that: 1)
GPUs require regular fine-grained parallelism and still suffer
from a conventional instruction pipeline, while ARAs benefit
an average of 1.4x speedup from a customized processing
pipeline without any instruction overhead and support irregular
fine-grained parallelism, 2) considering the performance per
watt, on average, ARAs are 18x more efficient than GPUs.

V. RELATED WORK

To address the challenge of power and utilization walls,
a vast number of customized accelerators or processors, as
summarized in [3], have been proposed in recent years.
However, most prior work has focused on certain specific
applications or a specific domain of applications, and only

focused on how to customize the design for a specific ac-
celerator that is either standalone or tightly coupled with the
processor. More recently, there has been numerous work on
accelerator-rich architectures (ARA) [5, 6, 8, 17, 20, 21, 23]
with a sea of loosely-integrated heterogeneous accelerators
that use a coherent memory hierarchy similar to the kind
used in conventional processors. These studies reported orders-
of-magnitude performance and energy gains, and evaluated
some interesting aspects of the ARA design including the
necessity of hardware accelerator management over software
management, the advantage of composable accelerators over
dedicated accelerators, the scalability of accelerators, the ad-
dress translation support, and the cache hierarchy design. The
most recent work [2, 10] also evaluated different ways of
integrating accelerators, including multicore accelerators (stan-
dalone), tightly-coupled accelerators and loosely-coupled ac-
celerators, and found loosely-coupled integration can achieve
better performance and energy. In general, there has been
a limited analysis and quantitative evaluation of how the
performance gains of ARAs are achieved, especially with
respect to the memory access components.

In this paper we mainly focus on the dedicated accelerators
(that are loosely-coupled with the CPU) for two reasons.
First, the observations in this paper apply to both dedicated
and composable (more flexible) accelerators. Second, the
performance gains from dedicated accelerators to composable
accelerators are rather intuitive—they mainly come from the
better utilization of underlying resources by composing more
accelerators [6].

The closest work to ours is the one done by Hameed
et al. [13] that compared the conventional CPU and ASIC
implementations of the H.264 algorithm. They found that the
inefficiency in conventional CPUs is mainly caused by the
additional pipeline logic and instructions (such as instruction
fetch, decode and additional register fetching) added for the
pure computation. To reduce this overhead and bridge the
gap with ASICs, they further customized the computations
using tightly coupled VLIW/SIMD instructions and fused
instructions with lower pipeline overhead, and customized
the data path within the pipeline to support the customized
instructions. However, they mainly focused on the computation
customization using one single application without an in-depth
evaluation of data access in the cache memory hierarchy.

In the Walkers work [15], they did try to evaluate the impact
of cache/memory bandwidth on the accelerator design for their
in-memory database application. However, their accelerator
is tightly-coupled with the processor and is not targeted to
the more generally applicable ARA. Moreover, they did not
evaluate the other factors observed in this work. In [16],
Krishna et al. described and evaluated the performance of the
network-oriented accelerators in the IBM PowerEn processor.
But they did not try to answer the fundamental sources of
performance gains as we did. In [23], Shao et al. analyzed
how to improve CPU and accelerator co-design, which is
orthogonal to our work. Finally, in [18], Lee et al. also
analyzed how GPUs can achieve the amazing speedup over
multicore CPUs.

In summary, we believe this is the first quantitative analysis



into the recently proposed ARA, and it can help researchers
gain insights into future ARA designs.

VI. CONCLUSION AND FUTURE WORK

The power and utilization walls in today’s processors have
led to a focus on accelerator-rich architectures (ARAs). The
emerging ARAs can achieve orders-of-magnitude performance
and energy gains as reported, but not analyzed. To better
understand the achieved big gains, we have conducted a
comprehensive analysis of the ARAs with more focus on
the memory access component not studied in prior work. We
find ARAs customize the computation by not only exploiting
the well-known coarse-grained parallelism, but also uniquely
customizing the processing pipeline (supporting irregular fine-
grained parallelism) without instruction overhead. Moreover,
ARAs customize the memory access with a tile-based read-
compute-write execution model that both reduces the number
of memory accesses and improves the memory-level paral-
lelism (MLP). After optimizing the software programs on
CPUs with the same set of techniques, we find the memory
access customization contributes more to the performance
improvement, and the dominating contributor to the ARA
memory access speedup is the improved MLP rather than
the widely-expected memory access reduction. Compared to
GPUs, customized accelerators do not require the regular
application behavior with abundant regular fine-grained data
parallelism. In addition, ARAs are much more power-efficient.
In our future work, we plan to provide an analytic model
for early-stage decisions to choose the right platform among
multicore CPUs, GPUs, and ARAs for target applications,
based on our quantified sources of performance gains.
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