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ABSTRACT

Streaming processing is an important technology that finds applica-

tions in networking, multimedia, signal processing, etc. However,

it is very challenging to design and implement streaming applica-

tions as they impose complex constraints. First, the tasks involved

in the streaming applications must complete the computation un-

der a latency constraint. Second, streaming systems are built un-

der more and more stringent power budget. Hence, power cap-

ping technique is employed to manage the power consumption for

streaming systems. To accommodate these needs, heterogeneous

systems that consist of CPUs and FPGAs are becoming increas-

ingly popular due to their performance and power benefits.

In this paper, we optimize the throughput for streaming appli-

cations on CPU-FPGA heterogeneous system under latency and

power constraints. We develop two algorithms to map the tasks

onto the heterogeneous system and order their execution by exploit-

ing the heterogeneity in architectural capabilities and task charac-

teristics. We also employ pipelining to improve the throughput by

overlapping the execution of different frames and use frequency

scaling to adjust the execution of tasks for power saving. Experi-

ments using a variety of streaming applications show that our het-

erogeneous solution can successfully meet the latency and power

constraints for the cases where the CPU implementation fails. Fur-

thermore, our technique can improve the throughput by 37.32% on

average.

1. INTRODUCTION
Data streaming applications such as multimedia, signal process-

ing, and network protocol are becoming prevalent due to the rapid

growth of mobile phones, IoT devices, and wireless network con-

nectivity. However, design and implementation of streaming appli-

cations raise several challenges. First, streaming applications typi-

cally have latency constraints. As a result, the tasks involved in the

streaming applications must complete by a certain amount of time

for responsiveness. Second, lots of systems running streaming ap-

plications are operated by stand-alone battery and thus power has

become a growing concern for such systems. In order to increase

the operation time, streaming systems have to cap their power foot-

print to the predetermined level.

To overcome these challenges, heterogeneous systems that cou-

ple CPUs, GPUs and FPGAs have emerged as a promising solution,

as it delivers orders of magnitude performance and energy benefits

compared to general purpose processors [21]. The major hetero-

geneous System-on-Chips (SoCs) available in the market include

NVIDIA Tegra serious with GPU, Xilinx Zynq with FPGAs, etc.

In this paper, we present algorithms and modeling techniques in an

attempt to map streaming applications onto heterogeneous systems

that consist of CPUs and FPGAs. FPGA-based heterogeneous sys-

tem has the potential to address the increasing latency and power

challenge for streaming applications as its flexible architecture can

enable efficient hardware customization for particular algorithms

or tasks. For example, FPGA-based systems have been deployed

to accelerate the Bing web search engine, leading to high through-

put and low power [20]. More importantly, High Level Synthe-

sis (HLS) has lowered the barrier to FPGA programming [16, 25].

Software programmers can use FPGA by writing high level pro-

gramming codes in C, C++, SystemC, Haskell and CUDA [6].

In this paper, we are interested in maximizing throughput for

streaming applications subject to latency and power constraints.

Given a streaming application represented by synchronous data flow

graph (SDFG) [15], an important problem is how to assign the tasks

to heterogeneous resources and order their execution to maximize

the throughput and keep the latency and power under constraints.

The power constraint is defined for a heterogeneous computing

node that consists of CPUs and FPGAs and latency constraint is

defined for an entire frame of the streaming applications. Differ-

ent task mapping strategies lead to different designs, which exhibit

large variations in terms of latency, power and throughput. In ad-

dition, in order to improve the throughput we also employ pipeline

design to overlap the executions of different frames by paralleling

their tasks. Meanwhile, we use dynamic voltage and frequency

scaling (DVFS) to stretch the execution on the CPU side and lower

the power consumption. Collectively, the design space enabled by

the heterogeneous architectures are expected to provide more flex-

ibility for latency, power and throughput.

Researchers are always looking for better optimization techniques

for streaming applications [14, 22, 10, 13, 19, 5, 4]. However,

none of them consider the task heterogeneity within streaming ap-

plications. As far as we know, our work is the first throughput op-

timization technique for heterogeneous systems while considering

both the latency and power constraints of the system.

Motivating Example. We now motivate the need of throughput

optimization for streaming applications on heterogeneous CPU-

FPGA system using application DCT. DCT is a classic streaming

application that is widely used in image transformation and sig-

nal processing. It consists of two tasks. Given an input matrix, it

invokes tasks dct 2d and transpose in sequence. We collect the la-

tency and power characteristics of the two tasks on CPU and FPGA,

respectively. For FPGA implementation, we use Vivado HLS tool

to generate the HDL design from original C code. The results are

shown in Table 1. As shown, different tasks exhibit heterogene-

ity in utilization of different computing resources. For example,

in terms of latency, task dct 2d benefits from the hardware cus-

tomization on FPGA, but task transpose prefers CPU execution.

For both tasks, FPGA implementation shows remarkable power

savings compared to CPUs thanks to its low frequency.

Figure 1 depicts the design space of CPU only and heteroge-

neous CPU-FPGA systems, respectively. For each design point,
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Figure 1: Design space and throughput results.

it exhibits different tradeoff in latency, power and throughput. For

both CPU only and heterogeneous systems, we can use pipeline de-

sign to parallelize dct 2d and transpose. If we use CPU only, there

exists 30 design points by exploring different pipelining mecha-

nisms and frequency levels. If we use heterogeneous CPU-FPGA

system, the task mapping enlarges the design space, leading to 120

design points. We divide the design space into four areas, A, B, C,

D as shown in Figure 1 (a). The power and latency constraints are

relaxed as the design points move from area A to D.

It is clear that heterogeneous CPU-FPGA systems provide more

opportunities to meet the stringent power and latency constraints

for streaming applications as shown in Figure 1 (a). For example,

dozens of design points from heterogeneous CPU-FPGA system

satisfy the power and latency constraints of area A and B, but none

of the design points from CPU only system falls in these areas.

More importantly, different points in the same area yield differ-

ent throughput. Figure 1(b) compares the maximal throughput of

CPU system with the maximum, average and minimum throughput

of heterogeneous CPU-FPGA system for area A, B and C, respec-

tively. As shown, there is large variation in terms of the achieved

throughput. Therefore, by exploring the design space, we have a

large potential to improve the throughput for streaming applica-

tions under power and latency constraints.

Task
CPU FPGA

time power time power

dct 2d 1.80ms 20.1w 0.50ms 2.7w

transpose 0.17ms 19.5w 0.36ms 2.6w

transfer 0.08ms (3.125 GB/s)

Table 1: Latency and power profiling of DCT’s tasks.

In this paper, we present a throughput optimization framework

for streaming applications on heterogeneous CPU-FPGA system

under power and latency constraints. We judiciously map the tasks

onto CPU and FPGA to exploit the heterogeneity in tasks and ar-

chitectures. The task mapping problem has been shown to be NP-

complete [9]. In this work, we develop two algorithms. One is

an optimal solution based on branch and bound. Another one is

a heuristic algorithm. Our heuristic algorithm first balances the

workload between CPU and FPGA using max-flow min-cut algo-

rithm. Then, it migrates some tasks between FPGAs and CPU for

further improvement. In addition, we also explore pipeline design

to overlap the executions of different frames by parallelizing the

tasks on CPUs and FPGAs together. The throughput of the pipeline

design depends on the longest pipeline stage. We notice that differ-

ent pipeline stages are varied, finishing the shorter stages earlier is

not beneficial, thus we use dynamic voltage and frequency scaling

(DVFS) to stretch its execution and lower the power consumption.

Our main contribution includes,

• Framework. We develop a framework for optimizing through-

put for power and latency constrained streaming applications

on heterogeneous CPU-FPGA system.

• Algorithm. We develop task mapping algorithms that intel-

Figure 2: System architecture.

Figure 3: An SDFG example.

ligently map the tasks onto CPUs or FPGAs based on archi-

tectural capabilities and task characteristics.

• Optimization. We present pipelining and frequency scal-

ing optimization techniques to improve the throughput and

power saving.

We implement our technique on a heterogeneous system that

consists of an Intel multicore CPU and a Xilinx VC707 FPGA.

Our experiments using a variety of streaming applications demon-

strate that our algorithms not only can fulfill the power and latency

constraints, but also improve the throughput by 37.32% on average

compared to the CPU implementations.

2. SYSTEM ARCHITECTURE AND MODEL
In this section, we describe the architecture details of our hetero-

geneous CPU-FPGA system and the application model.

Heterogeneous Systems. We consider the CPU-FPGA system as

shown in Figure 2. The heterogeneous system consists of a FPGA

coupled with a host CPU with high speed transfer integration. The

CPU is composed of more than one cores and different cores can

be used for executing different tasks concurrently. The voltage and

frequency can be changed through the power controller. We use

Vivado High Level Synthesis (HLS) tool to convert the high level

description of the tasks into HDL on FPGAs.

Application Model. The streaming applications are modeled as

G(V,E) using SDFGs, where V represents the set of nodes and

E represents the set of edges. Each node or actor models a task

and the edges between the nodes model the dependencies between

the tasks. The tasks are referred as actors that communicate with

tokens sent from one actor to another through the edges. For each

task, it is associated with a few attributes including its latency and

power consumption if mapped to FPGA and CPU. For each edge, it

is associated with attributes including the number of tokens and the

memory required to transfer between the source and destination.

SDFG has a periodic iteration behaviour [4]. A streaming applica-

tion usually divides its input data into frames and fully processes

each frame in one iteration before the next one arrives. Processing

of consecutive frames can be overlapped in a pipeline manner. Fig-

ure 3(a) shows an example of SDFG containing 3 tasks. For each

task, lat and pow denote its latency and power attributes respec-

tively. When pipeline is applied, as Figure 3(b) shows, 3 tasks are

divided into 3 pipeline stages (S#0, S#1 and S#2) to do com-

putation for 3 consecutive frames in parallel. The frames overlap

with each other on different tasks. For example, frame 1, 2 and 3

overlap on task t2, t1 and t0, respectively. t0(3), t1(2) and t2(1) in

S#0, S#1 and S#2 denote this scenario in Figure 3(b).



3. PROBLEM FORMULATION
Given a stream of n actors/tasks, T = {t1, . . . , tn}, we optimize

its throughput when mapped onto the heterogeneous CPU-FPGA

system. We use lat(ti) and pow(ti) to represent the latency and

power of task ti. Obviously, lat(ti) and pow(ti) depend on where

the task ti is mapped to. For task ti, we use binary variables mi to

represent its mapping,

mi =

{

1 if ti is mapped to FPGA

0 if ti is mapped to CPU
(1)

Then,

lat(ti) = mi × latfpga(ti) + (1−mi)× latfcpu(ti) (2)

pow(ti) = mi × powfpga(ti) + (1−mi)× powf
cpu(ti) (3)

where latfpga(ti) (powfpga(ti)) denote the latency/power of task

ti on the FPGA, respectively. On the CPU, frequency level af-

fects the latency and power. We use latfcpu(ti)(pow
f
cpu(ti)) to

denote the latency/power of task ti on the CPU at frequency f .

latfpga(ti)(powfpga(ti)) and latfcpu(ti)(pow
f
cpu(ti)) are collected

during the profiling stage as shown in Figure 4, which are the at-

tributes of the nodes in SDFG.

In order to increase the throughput, we employ pipeline execu-

tion mechanism as shown in Figure 3(b). More clearly, given a

stream of n actors/tasks, we first transform it into a linked list by

merging the splitter node if there are any [8]. Then, we divide the

n tasks into m stages {s1, . . . , sm} for pipeline execution, where

1 ≤ m ≤ n. A pipeline stage is formed by a set of consecutive

tasks. If m = 1, then all the tasks will run sequentially. If m = n,

then all the tasks will run in parallel. Figure 3(b) illustrates our

pipeline execution. In this example, there are 3 tasks in the SDFG

and each task forms a stage. Thus, we can process three consecu-

tive frames in parallel by executing different tasks for them. When

one frame finishes its execution, next frame will enter the pipeline.

For pipeline stage si, its latency models both the computation

time of the tasks in it and communication time for tasks with de-

pendency,

latsi =
∑

start(si)≤k≤end(si)

lat(tk) + e(tk, tk+1) (4)

where start(si) and end(si) represent the starting and ending task

indices for pipeline stage si. e(ti, tj) represents the communica-

tion time between task ti and tj . e(ti, tj) not only depends on the

size of the data transfer, but also where the source and destination

are mapped to.

The latency of different pipeline stages may vary. However, the

throughput of the streaming applications is determined as the in-

verse of the longest pipeline stage as follows,

Throughput =
1

maxs1≤si≤sm latsi
(5)

Streaming systems are operated under complex latency and power

constraints. We model these two factors as follows,

Latency Model. For streaming systems, the end-to-end latency of

one frame should not violate the constraint. We define the latency

of one frame,
Lat = m×max1≤si≤sm latsi (6)

Power Model. The system power Pow is composed of four parts,

which include the system active power P active, idle power of CPU

P idle
cpu and FPGA P idle

fpga, and the power of communication logic on

FPGA P comm
fpga ,

Pow =
∑

s1≤si≤sm

P active
si

+ P idle
cpu + P idle

fpga + P comm
fpga (7)

Figure 4: Optimization flow.

where P active
si

is the active power consumption of pipeline stage
si. It is computed as the ratio of active energy of this stage and the

longest pipeline stage. We use powwait
cpu to denote the power con-

sumption of CPU when it is waiting for FPGA to finish, or waiting

for stage ends after finish all tasks’ computation. Then,

P active
si

=
Eactive

si

maxs1≤si≤sm latsi
(8)

Eactive
si

=
∑

start(si)≤k≤end(si)

(pow(tk)× lat(tk)

+mi × powwait
cpu × lat(ti))

+ powwait
cpu × (Lat− latsi)

(9)

P idle
cpu and P idle

fpga can be measured when there is no workload

on the CPU and FPGA. And P comm
fpga can be integrated in P active

when there is task executing on FPGA.

Finally, we formulate the optimization problem as follows,

PROBLEM 1. Let T = {t1 · · · tn} be a stream of n actors

executing on a CPU-FPGA heterogeneous system. Let Powcap

be the predetermined power capping for the heterogeneous system

and Latcap be the latency deadline for one frame of the stream-

ing application, we aim to maximize the throughput subject to

Pow ≤ Powcap and Lat ≤ Latcap.

4. OPTIMIZATION OVERVIEW
Figure 4 depicts the optimization flow. Given a streaming ap-

plication represented by SDFG, we first profile each actor/task to

collect its latency and power consumption on CPU and FPGA. For

the CPU profiling, we collect the latency and power consumption

for each task at different frequency level; for the FPGA profiling,

we execute the task on FPGA and measure the latency and power.

Then, we annotate the SDFG with those characteristics.

The core function is the task mapping component. The goal of

task mapping algorithm are two folds. First, it determines how the

tasks are mapped to the heterogeneous system. More clearly, for

each task the algorithm determines the processor (FPGA or CPU)

it is mapped to. If the task is mapped to CPU, it also determines the

corresponding execution frequency. Second, we employ pipelining

to overlap the execution of different tasks for high throughput. Our

algorithms determine the number of pipeline stages and the com-

position of each stage in terms of tasks. In the following, we will

formulate the optimization problem and describe the task mapping

algorithms.

5. ALGORITHMS
We propose two algorithms for Problem 1. One is optimal al-

gorithm based on branch and bound. Another one is a heuristic

algorithm.

5.1 Optimal Algorithm
We first devise an optimal algorithm that explores the design

space using branch and bound. Algorithm 1 presents the details.



Figure 5: Heuristic algorithm case.

Figure 6: Flowchat of the heuristic algorithm.

Given n tasks/actors, there exists 2n−1 ways to divide the tasks

into pipeline stages. In Algorithm 1, we first explore different

pipeline mechanisms (lines 1-5) and then for each task, we explore

its mapping (CPU or FPGA) (lines 3-5) and frequency if (line 5) it

is mapped to CPU. Each call of the DFSFreqSpace for the last

task generates a final mapping, where we can derive the through-

put, latency and power results. Obviously, Algorithm 1 runs in

O(2n2nfn) time in the worst case.

Algorithm 1: Optimal algorithm.

Data: stream S with n tasks, frequency space FS with f frequencies,
latency constraint Latcap and power constraint Powcap

Result: A mapping M for S and a maximal throughput Throughput
under Latcap and Powcap

1 for i = 0 to 2n−1
− 1 do

2 PipelineStageDivide(S,M, i)
3 for j = 0 to 2n − 1 do
4 ProcTypeMap(S,M, j)
5 DFSFreqSpace(0)

6 DFSFreqSpace(k) begin
7 if k = n then
8 if Latcap and Powcap are not violated then
9 Update M and Throughput if necessary

10 for i = 0 to f − 1 do

11 TS[k].SetFreq(FS(i))
12 DFSFreqSpace(k + 1)

We develop pruning strategies for efficiency. The idea is to stop

further search as soon as the power and latency constraints are vio-

lated. First, we explore the frequency on the CPU in the ascending

order. If the task mapped on CPU leads to a power cap violation at

certain frequency, then we stop searching the frequencies greater

than it. Second, after we set frequencies for all the actors in a

pipeline stage, we test whether the length of current stage will vio-

late the latency constraint. These strategies could be applied before

DFSFreqSpace for task k+1.

5.2 Heuristic Algorithm

The complexity of the optimal algorithm is exponential in the

worst case. Hence, we also develop an efficient heuristic algorithm.

Figure 6 depicts the flow of our heuristic algorithm. We first for-

mulate a max-flow min-cut problem, denoted as step 0. The goal

of this step is to minimize the total latency and data transfer time

for the tasks mapped onto the heterogeneous CPU-FPGA system.

More clearly, we add one source node to represent CPU and one

sink node to represent the FPGA into the SDFG. For each node v,

we connect it with source and sink node. The edges between v and

the source (sink) are weighted by the latency on the sink (source)

node. For the other edges, they are weighted by transfer time if the

source and destination node are mapped to different processor.

The output of the max-flow min-cut step is an initial task map-

ping. Then, the heuristic algorithm tentatively iterates three steps.

In step 1, initially, we divide n tasks into n stages, each task cor-

responds to one stage. Then, it merges the neighboring stages until

the latency is within the latency constraint. In step 2, it attempts to

scale down the frequency for the tasks that have latency slack com-

pared with the longest stage, in order to decrease the total power

consumption under power capping. If the power still cannot satisfy

the power constraint, we will enter step 3. In step 3, we implement

a power balancing function to choose a task to do pipeline merge

again or offload it onto FPGA. We define a metric for each task to

measure the power balancing benefit after the merging or offload-

ing, as shown in Equation 10.

BLCBenefiti = PowerDeci/LatencyInci (10)

In Equation 10, PowerDeci denotes the power decrement after

balancing the ith task, and LatenchInci denotes its latency incre-

ment. Larger BLCBenefiti means more benefit we could get by

choosing ti to do balancing. We offload the task with the largest

BLCBenefit at each iteration. After step 3, it will go back to

step 1 until latency and power constraints are both satisfied.

Figure 5 presents an example depicting how the heuristic algo-

rithm works on a 3-task stream. Initially, t1 and t2 are mapped on

CPU, and t3 is mapped on FPGA by the max-flow min-cut step.

They forms a 3-stage pipeline. At step 1 in the first iteration, tasks

t2 and t3 are merged to form a new stage from the initial pipeline

organization. Then at the second step, t1 is stretched to save power.

Unfortunately, power capping is stall not satisfied now. Then step

3 chooses t1 as it has the highest balancing benefit. And its balanc-

ing method is being offloaded from CPU onto FPGA. In the second

iteration, after merging of t2 and t3, and then scaling frequency of

t1, t2 and t3, we get a legal mapping satisfying all constraints.

In the worst case where latency constraint can be met while

power constraint cannot be satisfied, the main loop runs in O(n2f)
time. Thus the heuristic algorithm runs in O(n2max{f, n}) time,

where n is the number of tasks, and f is the number of frequencies.

6. EXPERIMENT



6.1 Experimental Setup
The heterogeneous CPU-FPGA system consists of an Intel Core

i5 CPU processor and a Xilinx VC707 FPGA. The CPU has four

cores. Each CPU core supports 12 different frequency levels, which

ranges from 1.6GHz to 3.1GHz. The communication between CPU

and FPGA is through PCI Express. In Gen2 mode and 8 lanes con-

figuration, the maximal data rate could achieve up to 3.125 GB/s

(each lane supports maximal 800 MB/s data rate).

We use a benchmark suite consisting of several representative

streaming applications from various areas. AES (2 actors) and MD5

(2 actors) are from security area, DCT (4 actors) and JPEG (6 ac-

tors) are from image processing area, and a simple LTE receiver (3

actors) and a complete LTE receiver (8 actors) are from wireless

communication area. For each application, we first profile the la-

tency and power of each actor under different operating frequency

levels on CPU and FPGA platform, respectively1. The power con-

sumed by CPU is measured through Intel’s Running Average Power

Limit (RAPL) interface. On FPGA, we use Xilinx’s Vivado tool

to implement the optimized hardware designs. We obtain a de-

sign’s estimated latency through high level synthesis process by

Xilinx’s High Level Synthesis (HLS) tool. The power consumption

on FPGA by the design is reported by Xilinx’s power estimator.

We implement our optimal and heuristic algorithms by SDF3

tool set [23]. We use POSIX Threads interfaces to realize concur-

rency of actors in different pipeline stages. And threads synchro-

nizations are manually inserted after two actors when they are both

mapped on FPGA and reside on different pipeline stages. These

synchronizations guarantee the correct read and write orders dur-

ing their communication with FPGA.

6.2 Results

6.2.1 Performance improvement

We compare three solutions, which are the optimal solution on

CPU only (cpu-opt), the optimal and heuristic solution on hetero-

geneous CPU-FPGA (hetero-opt, hetero-heu). For the optimal so-

lution on CPU, we use the same algorithm (Algorithm 1) but only

map to CPU cores. For each application, we set nine pairs of la-

tency and power constraints.

We first compare cpu-opt and hetero-heu on heterogeneous CPU-

FPGA solution. The results in Figure 7 show that of all 54 con-

straint pairs, hetero-heu satisfies them all, while cpu-opt fails 15

pairs. Of the pairs for which both cpu-opt and hetero-heu could

satisfy, the hetero-heu can achieve 37.32% throughput improve-

ment on average compared with cpu-opt. CPU usually consumes

much more power than FPGA for most tasks in the streaming appli-

cations. As power constraint becomes rigid, we cannot map tasks

of a streaming application totally on CPU. For example, offloading

AES’s inversshiftrow task can reduce the application’s power from

11 Watt to 8 Watt under latency constraint 2 milliseconds and 10

Watt power constraints because inversshiftrow consumes 10.7 Watt

on CPU and 0.64 Watt on FPGA. On another hand, as latency con-

straint becomes rigid, the heterogeneity in those applications helps

reduce latency. For example, in the case of DCT under latency

constraint 2 milliseconds and power constraint 30 Watt, cpu-opt

cannot satisfy the latency constraint because task dct 2d executes

1.8 milliseconds on CPU and 0.5 milliseconds on FPGA. For the

cases where both cpu-opt and hetero-heu satisfy constraints, hetero-

geneity again helps improve throughput. The case of DCT under 4

milliseconds and 20 watt illustrates this due to the same reason of

dct 2d’s latency benefit on FPGA.

1For the FPGA platform, there is only one operating frequency
level are profiled.
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overhead.

We also compare the two heterogeneous solutions from the per-

spectives of accuracy and running time. Figure 7 shows that of all

pairs of latency and power constraints, hetero-heu could achieve

optimal throughput out of a total of 39 pairs. Overall, the through-

put of hetero-heu is within 4.95% of hetero-opt. But hetero-heu

achieves this accuracy in a very short running time. Table 2 com-

pares the run-time of hetero-heu and hetero-opt. It shows that our

heuristic algorithm is much efficient than the optimal solution.

6.2.2 Hiding of communication overhead

Here we demonstrate how our algorithms overlap the commu-

nication with computation. Figure 8 shows the computation and

communication statistics for all the benchmarks under the the first

constraint setting in Figure 7. The computation denotes the length

of the longest pipeline stage and communication denotes the sum

of communication overhead between CPU and FPGA across other

stages. We could see that by our algorithms, the communication

time in pipeline stages is overlapped with the longest stage. For all

the other settings in Figure 7, the same conclusion holds.

Table 2: Runtime comparison between two algorithms.
Benchmark Hetero-Heuristic Hetero-Optimal Speedup

AES 0.29ms 1.20ms 4.14

DCT 1.67ms 40.13ms 24.47

JPEG 6.49ms 105.60s 16271

LTE-Rx3 0.43ms 12.53ms 29.14

LTE-Rx8 20.18ms >4 hours N/A

MD5 0.24ms 2.07ms 8.63

7. RELATED WORK
There exists a rich set of studies on optimization for stream-

ing applications. FPGAs have been used to realize the streaming

applications efficiently. The work in [11] implements a compi-

lation strategy to map streaming application onto FPGA by sev-

eral stream specific optimizations to improve performance. By ju-

diciously replicating the bottleneck actors in a stream, the work

in [10] develops an algorithm to optimize throughput of stream-

ing applications on FPGA subject to FPGA area and latency con-

straints. The authors of [5, 4] minimize total FPGA area cost sub-

ject to throughput constraint. They firstly use replication and mod-

ule selection together to improve throughput [5]. Then, they take

communication into consideration to achieve the area optimization

objective [4]. Multicore architecture has been used for streaming

application, too. The work in [8] uses a greedy algorithm to judi-

ciously split or fuse together tasks in stream according to the rela-

tionship between tasks’ computation requirements and the number

of cores. The authors of [7, 14] also consider the effect of commu-

nication when doing the mapping. The work in [7] reduces com-

munication cost introduced by replication by fusing and replicating

filters, while the work in [14] proposes a graph partitioning strategy

to overlap communication and computation.

Power and energy are also considered when optimizing stream-

ing applications. Dynamic voltage and frequency scaling for slack
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Figure 7: Throughput improvement.

reclamation to save power has been used on Multiprocessor Systems-

on-Chip (MPSoC) [22, 1, 18, 24, 2, 3, 17]. On-line DVFS tech-

niques are applied in [1, 18, 24] to utilize dynamically created slack

to reduce overall energy consumption. The work in [22] aims to

minimize energy consumption of streams using both off-line and

on-line analysis, subject to throughput constraints. Power gating

is also used to reduce energy consumption of streaming applica-

tions. The authors of [12] proposes a technique to improve the en-

ergy efficiency of FPGA devices by exploiting power gating during

idle periods in streaming applications. Compared to prior works,

our work optimizes throughput subject to both power and latency

constraints for heterogeneous CPU-FPGA system for the first time.

This is a more challenging problem as it requires careful modeling

the trade-off among latency, power and throughput.

8. CONCLUSION
We present a throughput optimization framework for stream-

ing applications on heterogeneous CPU-FPGA system under power

and latency constraints. By mapping the tasks onto heterogeneous

system and employing pipelining and frequency scaling, we aim to

optimize the throughput. We formulate the problem and develop

two algorithms for it. Experiments using a variety of streaming

applications show that our heterogeneous solution can successfully

meet the latency and power constraints for the cases where the CPU

implementation fails. Furthermore, our technique can improve the

throughput by 37.32% on average.
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