
SMEM++: A Pipelined and Time-Multiplexed SMEM Seeding Accelerator
for Genome Sequencing

Jason Cong, Licheng Guo∗, Po-Tsang Huang, Peng Wei and Tianhe Yu∗

University of California Los Angeles, USA
{cong, peng.wei.prc}@cs.ucla.edu, {lcguo, theodoreyth}@ucla.edu

National Chiao Tung University, Taiwan
bughuang@nctu.edu.tw

∗ indicates co-first authors and equal contribution

Abstract—Next-generation sequencing motivates the research
of FPGA acceleration for genome sequencing algorithms. The
recently developed quadratic-time SMEM seeding algorithm
becomes a time-consuming computation kernel in genome
sequencing, but it has not been well studied. The fundamental
challenge of accelerating the SMEM algorithm is to handle its
large volume of random memory accesses. While the state-of-
the-art SMEM accelerator attempts sacrifices the performance
of individual processing elements to maximize the task-level
parallelism, this methodology suffers a serious resource under-
utilization issue. Therefore, we propose SMEM++, a pipelined
and time-multiplexed FPGA accelerator for SMEM algo-
rithm. SMEM++ adopts the canonical non-blocking pipeline
methodology and implements a fully pipelined accelerator
with initiation interval equal to one. Moreover, we design
a communication interface adapter to make the accelerator
compatible to the target platform interface and increase its
portability. Experiments on the Intel HARPv2 platform show
that SMEM++ outperforms the original software by 24x, and
outperforms the state-of-the-art SMEM accelerator design by
6.3x, with 43% less logic resource usage.

1. Introduction
The next-generation sequencing (NGS) technology has

stimulated an ever-increasing requirement for computa-
tion capabilities [1][2]. FPGA acceleration is considered
a promising approach to address this requirement [3].
Genome sequencing involves both biochemical and com-
puting phases [4]. The biochemical phase takes copies of
genomes as input, fragments these genome copies into bil-
lions of small pieces, called reads1, and sequences each
read. The computing phase reassembles these discrete reads
by aligning them onto a reference genome whose length is
3×109 basepairs. Searching on such a billion-basepair string
for each of billions of reads makes it compute-intensive.

The computing phase for a read consists of two steps [5].
The first step, seeding, finds candidate alignment locations
on the reference genome by matching part of the read to
these locations, called seeds; the second step, extending,
extends the seeds forward and backward to align the entire
read to each of the candidate locations. For the extending
step, the Smith-Waterman algorithm [6] is predominantly
adopted, and its acceleration problem has been extensively
studied. However, the algorithm for performing seeding
is still constantly evolving. This paper is devoted to the
acceleration of the newly proposed super-maximal exact
match (SMEM) seeding algorithm that is adopted by the
state-of-the-art BWA-MEM read aligner [7]. Compared to
the conventional linear-time seeding algorithm that features

1. This terminology is somewhat confused with the memory “read”
access. Throughout the paper we use the italic read to refer to the short
genome sequence, so as to distinguish from the memory read access.

FM-index based backward searching [8], the SMEM algo-
rithm instead adopts FMD-index to perform both forward
and backward, i.e., bidirectional, searching, resulting in a
quadratic time complexity [9]. Although the acceleration
of the backward searching algorithm is well studied [3],
the aforementioned algorithmic differences do bring new
challenges to FPGA acceleration and motivate our study.

The acceleration of the SMEM algorithm faces a classic
design challenge: the need of hiding the long off-chip mem-
ory access latency, since the algorithm generates tremendous
random off-chip accesses. Chang et al.’s design [10] remains
the only FPGA acceleration effort for SMEM algorithm.
Their accelerator features an array of parallel processing
elements (PEs) that simultaneously send off-chip requests to
hide the off-chip latency. The PE design is greatly simplified
to process one read at a time and go through all the steps
sequentially, which leads to the maximization of the number
of PEs and extensive exploration of task-level parallelism.
However, this design principle suffers a severe resource
underutilization issue because when a PE is waiting for off-
chip memory responses, it entirely lies idle. Our experiments
show that in [10] a PE spends 56.2% of the overall execution
time idling for memory responses. Moreover, the replication
of PEs rapidly exhausts the FPGA on-chip resources. Specif-
ically in [10], the FPGA fabric can only hold at most 16 PEs,
utilizing only 35% of the platform’s off-chip bandwidth.

To resolve this issue, we adopt a different design
methodology—the non-blocking pipeline methodology—to
hide the off-chip latency. Being initially proposed in the non-
blocking cache design [11] and adopted by every modern
processor, the non-blocking pipeline methodology temporar-
ily stores outstanding memory requests in a FIFO structure
instead of letting them block the computation pipeline. Such
non-blocking design is also adopted by the FPGA com-
munity for the acceleration for applications with extensive
random off-chip accesses. For example, Arram et al. [12]
has used this methodology to accelerate the aforemen-
tioned linear-time backward searching algorithm. While our
SMEM++ accelerator shares with these previous studies the
same big picture, the key question becomes how to achieve
the optimal efficiency of the accelerator design, i.e., making
the initiation interval equal to one (II = 1) with a highly
complex computation kernel. Specifically, our SMEM++
design faces and resolves the following challenges:

1) Off-chip memory structural hazard. The SMEM al-
gorithm consists of a linear-time forward phase and a
quadratic-time backward phase, both of which sends two
random off-chip requests in each iteration. To process one
forward and/or backward iteration per cycle, one has to
face the challenge of performing multiple 512-bit off-chip

requests every cycle, which often leads to structural hazards,
since many FPGA platforms (e.g., Intel HARPv2 [13])
supply only one off-chip memory port.

2) On-chip memory structural hazard. The SMEM back-
ward phase iteratively retrieves and updates the intermediate
data generated by the forward phase. As a result, the on-
chip memory that stores such intermediate data is going to
be read/written simultaneously by both phases, leading to
potential structural hazard.

3) Memory channel congestion. An II = 1 pipeline
requires a large random off-chip access bandwidth (25.6
GB/s in our case), which surpasses the maximum band-
width of most FPGA platforms. The pipeline must correctly
handle inevitable memory channel congestion, i.e., properly
stall and recover when congestions occur. This challenge
becomes more serious since SMEM++ contains a very deep
pipeline with many affiliate modules.

To address these challenges, we identify the similarities
and differences between the forward and backward phases,
and implement a unified pipeline that can process a read in
either forward or backward way. As a result, our pipeline
achieves the throughput of processing one forward or back-
ward iteration per cycle. Since the forward and backward
phases have different computation complexity (O(N) vs
O(N2)), this unified pipeline achieves a more efficient
resource utilization than the one with separate stages. Also,
in each cycle the unified pipeline requires at most one re-
trieve and update operations on the intermediate data, which
resolves the structural hazard in Challenge #2. Moreover,
we modified the backward phase of the original SMEM
algorithm to achieve in-place intermediate data retrieval and
update, which reduces the BRAM usage by 1/3.

While the unified pipeline processes one basepair iter-
ation and two 512-bit off-chip requests per cycle, we pro-
pose a communication interface adapter based on the time-
multiplexing and asynchronous FIFO to address Challenges
#1 and #3. We demonstrate a proof-of-concept implemen-
tation based on the Intel HARPv2 platform with one read
port at 400 MHz, and connect our 200 MHz SMEM++ that
requires two read ports to this platform. Then our accelerator
can fully utilize the bandwidth and properly stall and recover
during memory channel congestion.

In summary, we make the following contributions:
• A non-blocking pipeline design that achieves a maximal

throughput of processing one basepair per cycle.
• A communication interface adapter that adopts the time-

multiplexing and asynchronous FIFO to make our design
compatible with various communication interfaces.

• An early study that demonstrates the use of the Intel
HARPv2 platform for application acceleration.

Our experiments show that the design achieves 87.5
Mbp/s (million basepairs per second, see Section 2.1)
throughput, which outperforms the best existing design [10]
by 6.3x and outperforms the single thread CPU execution by
24x. Also, our design uses 43% less logic resource compared
to [10].

2. Background and Related Work
In this section we first briefly describe the SMEM

seeding algorithm and its differences from the conventional
backward searching algorithm. Next, we review existing
studies on the FPGA acceleration for various seeding al-
gorithms. Finally, we introduce our experimental platform.

2.1. Review of SMEM Seeding Algorithm
The SMEM algorithm [9] identifies all the super-

maximal exact matches (SMEMs) of a read which 1) is
an exact match on the reference genome, and 2) is not
contained in any other longer match. It accepts a given read
R and a start position x as input, and extends from position x
rightward (forward) one basepair at a time, until no match is
found. Next, for every match found in the forward phase, the
algorithm extends it leftward (backward) from position x−1
one basepair at a time, until no match is found. After all the
matches are examined, the quadratic-time backward phase
is completed. Compared to the original algorithm in [9],
Algorithm 1 applies our modification on the backward phase
to realize in-place retrieval and update of the intermediate
data (CurrQueue).

Figure 1: Example of SMEM algorithm
As described in [9], SMEM algorithm relies on FMD-

index to realize base-pair extension in both forward and
backward phases. This distinguishes the SMEM algorithm
from the conventional FM-index based backward searching
algorithm [8] in (1) encoding and update methods; (2) time
complexity and (3) memory access patterns. These algorith-
mic changes bring new challenges to hardware acceleration.

Also, since the basic operation of SMEM algorithm is
extending one basepair forward or backward, the perfor-
mance is able to be measured by the number of basepairs
processed in a unit time. Throughout this paper, we use the
term million basepairs per second (Mbp/s) to measure the
accelerator performance.

2.2. FPGA Acceleration on Seeding Algorithms
Many previous studies [14][15][12][16] are devoted to

the FPGA acceleration of various seeding algorithms. [15]
accelerates the BFAST sequencing algorithm that uses a
read’s k-mer (all of a string’s substrings of length k) as
seeds. The search engine to find candidate locations on
the reference genome is based on hashing and filtering
algorithms, as opposed to FM-index or FMD-index. [14] is
the first work that accelerates the FM-index based algorithm
on FPGA with the assumption that the whole reference
data can be stored on FPGA. [12] brings the canonical
non-blocking pipeline methodology into the acceleration of
the FM-index based algorithm. While both our work and
[12] share the same basic idea with the non-blocking cache
design in 1981 [11], the algorithmic changes lead to multiple
differences and new challenges to achieve an II = 1 design
for the SMEM acceleration, which will be discussed in
Section 3.

Some studies attempt to address the same quadratic-time
algorithm as ours, e.g., [16] and [10]. However, the former
only optimizes the algorithm in the software level; the latter
suffers the serious resource underutilization which motivates
us to adopt the non-blocking pipeline methodology.

Algorithm 1 SMEM Seeding Algorithm
Input: Read R, Start position x
Output: All SMEM intervals containing the base pair: R[x]
1: CurrPtr ← 0
2: for i = x + 1 to |R| − 1 do . Forward extend
3: newIntv = BWT extend(lastIntv,R[i], Forward)
4: if newIntv != lastIntv then
5: CurrQueue[CurrPtr] ← lastIntv
6: CurrPtr ← CurrPtr + 1
7: lastIntv = newIntv
8: end if
9: end for

10: if i = |R| then
11: CurrQueue[CurrPtr] ← newIntv
12: CurrPtr ← CurrPtr + 1
13: end if
14: BackwardPtr ← 0
15: ForwardPtr ← CurrPtr − 1
16: for i = x− 1 to −1 do . Backward extend
17: size← 0
18: for j = ForwardPtr to BackwardPtr do
19: newIntv = BWT extend(CurrQueue[j], R[i], Backward)
20: if No More Match & No Longer Matches then
21: Push CurrQueue[j] to OutputQueue
22: else newIntv != lastInterval
23: CurrQueue[ForwardPtr − size] ← newIntv
24: size← size + 1
25: end if
26: end for
27: if size == 0 then
28: break
29: end if
30: BackwardPtr ← ForwardPtr − size + 1
31: end for
32: return OutputQueue

2.3. Intel HARPv2
The second generation of Intel’s Heterogeneous Archi-

tecture Research Platform (HARP) [17] represents the state-
of-the-art tightly coupled CPU-FPGA platforms. To improve
the communication bandwidth of FPGA, it brings a Xeon
E5-26xx CPU and an Arria 10 GX1150 FPGA into a single
semiconductor package. Fig. 2 illustrates the HARPv2.

PCIe 0

PCIe 1

CPU
cores

Last
Level
Cache

DRAM
User Logic

Intel Interface IP

ca
ch

eQPI

FPGACPU

Figure 2: Intel HARPv2 System Overview

3. Non-blocking Pipeline Design
Fig. 3 illustrates the overall architecture of SMEM++

accelerator. It consists of two major components: Non-
blocking Pipeline with II=1 and Communication Interface
Adapter. We present the non-blocking pipeline design in this
section, and leave the adapter design to Section 4.

The non-blocking pipeline realizes full functionality of
the SMEM algorithm. It is composed of three main modules:
pipeline module, storage module, and control module.

3.1. Pipeline Module
This module presents the datapath of our non-blocking

pipeline. First we present how to make the algorithm com-
patible with the hardware non-blocking property, then we
introduce our implementation which unifies the forward &
backward phases together in parallel.
3.1.1. Function Module Reordering.

Originally in the SMEM software, the extension opera-
tion can be divided into the following four steps:
• Step 1 takes an FMD-index bi-interval and extend di-

rection as input and calculates the two table reference

Forward

FIFO for
Pending

reads

Control Module

New Read Pool
Interval

Generation

Output
Queue 1

……

m
e
m

o
ry

re

q
u

e
st

s
C

P
U

-F
P

G
A

In
te

rf
a
ce

Adapter Layer

Adapter Layer

400MHz Domain

200MHz Domain

write

results

Curr
Queue N

Output
Queue 2

……

Curr
Queue 2

Address
Calculate

Backward
Curr

Queue 1

Output
Queue N

read

outputs

Current
Interval
Queue

Output
Queue

Extension
Control

2 memory requests
/ cycle

m
e
m

o
ry

re

sp
o

n
se

s

Figure 3: SMEM++ Accelerator Architecture Overview

addresses respectively to extend the interval upper/lower
bounds.

• Step 2 performs off-chip accesses to retrieve the data.
• Step 3 decodes and processed the retrieved data, then cal-

culates the forward/backward extension candidate results.
• Step 4 (Forward) decides whether further alignment is

possible and stores valid match in a temporary queue.
• Step 4 (Backward) decides whether all the matches in

the temporary queue has finished extension and stores the
result either back in temporary queue or the final output.

Note that if directly mapped to hardware, there will be
uncertain latencies between Step 2 and Step 3, while other
steps could be tightly coupled. Thus, to make use of the
non-blocking pipeline property, we shift the order of the four
steps and place Step 2 at the end of the pipeline such that
all fixed-latency operations are glued together. The functions
are executed in pipeline in following order:
• Interval Generation → Step 3
• Extension Control → Step 4
• Address Calculate → Step 1
• Issue memory requests (last stage) → Step 2

After executing step 2, the computation information of
the current processing read are stored into a FIFO just like
the Miss Status Holding Registers (MSHR) in non-blocking
caches, while the pipeline keeps processing other reads.
3.1.2. Unifying Forward/Backward Extensions.

Our unified pipeline design is based on the reordered
execution flow. As previously shown, the forward and back-
ward phases only differ in Step 4. Therefore, it leads to
significant resource saving if we unify the other three steps.

In addition, as challenge #2 points out, both forward and
backward function will interact with on-chip memory for
intermediate data, potentially resulting in structure hazard.
Therefore, all memory access operations are scheduled to
be in the same level of the two branches in pipeline. At
any stage, only one of the two branches is active, which
eliminates the possible port contention. Bypassing logic is
used when candidates are to be stored and fetched in the
same cycle. In addition, some empty stages are inserted
between extension control and address calculation to meet
the multi-cycle delay when accessing the Current Interval
Queue (see section 3.3).
3.2. Control Module

The control module handles the stall and recovery of
the pipeline execution when memory congestions occur.

To execute an extension operation each cycle, the pipeline
requires 25.6GB/s off-chip bandwidth, which surpass the
maximum bandwidth available, leading to constant memory
channel congestions.

In general, the off-chip communication interface of
FPGA platform will provide a congest signal to indicate
the congestion status. When the signal is asserted, user are
requested to stop sending memory requests. Therefore, when
the channel is congested, we broadcasts the congest signal
to all stages of our pipeline to stop them and preserving the
current state.

However, this approach leads to a huge fanout of the
congest signal. To resolve this, we recursively duplicate
and register this signal until the fanout requirement is met.
While this approach successfully resolves the timing viola-
tion issue, it results in a multi-cycle delay from the cycle
when the congest signal is asserted to the cycle when the
pipeline execution is actually stalled. This issue is addressed
by buffering the memory requests temporarily, which is
discussed in detail in Section 4.

3.3. Storage Module
This module stores the input, output and the intermediate

data during the processing. It consists of four components:
1) New Read Pool stores a batch of input reads to

SMEM++.
2) Output Queue stores all generated SMEMs that are

encoded as integral intervals.
3) Pending Read FIFO stores the reads that are waiting

for their memory responses. As we reordered the memory
response to be in the same order as memory request, the
earliest arrived memory response always belongs to the
read at the head of the FIFO. Together with its memory
responses, the read will then be re-issued into the pipeline
for the next round of extension.

4) Current Interval Queue. The current interval queue
stores the intermediate data of each read during execution.
This queue structure corresponds to the CurrQueue vari-
able in Algorithm 1.

Note that we can modify the algorithm to reduce the size
of Current Interval Queue. The original algorithm alterna-
tively uses two queues (CurrQueue and PrevQueue) for
updating the generated intervals in the backward phase [9].
Directly using this not-in-place approach leads to a consid-
erable on-chip RAM overhead. We reduced two queues to
one by keeping the information of last and current size of
the queue, retrieving the information in one iteration while
process it and store it back in the following iteration. As a
result, the BRAM usage is reduced by 1/3.

4. Communication Interface Adapter
This section presents how we integrate the pipeline into

the target FPGA platform. We build a communication in-
terface adapter which bridges the gap of working frequency
and memory ports between the pipeline and the underlying
FPGA platform interface. The adapter also improves the
portability of the accelerator so that we can port it elsewhere
by just reconfiguring the adapter.

4.1. Compatibility Issue
Our pipeline is designed to work at 200MHz. To achieve

II = 1, it needs one 1024-bit data width memory port
since each basic extension operation requests 2 cache line
of data. However, our experimental platform, Intel HARPv2,

supplies a 400 MHz off-chip communication interface with
only one 512-bit read port.

Instead of changing the pipeline, we design an inter-
face adapter between the user interface and the vendor-
provided interface. To implement the accelerator onto a
certain platform, we only need to modify the adapter to
make the accelerator compatible, avoiding changing the
complex accelerator itself.
4.2. Adapter Implementation

Fig. 4 illustrates the overall architecture of the adapter,
which consists of two parts.

1) Request channel. The request channel employs an
asynchronous FIFO for clock-domain crossing. This FIFO
writes two entries and reads one entry at a time. Recall
that the pipeline sends two memory requests at each 200
MHz clock cycle. This time-multiplexing implementation
successfully adapts the requirement of two reads per 5ns to
one 400 MHz read port without performance degradation.

Processing Element (PE) of SMEM++

odd-even
tag

CPU-FPGA Interface

Memory reponsescongest signal

…………

or

congest
broadcaster

addr_k

memory requests

addr_l

W
r_

D
at

a_
1

W
r_

D
at

a_
2

AlmostFull

R
d

En

R
d

_D
at

a

2-write &
1-read
async
FIFO

stall signal

R
d

_D
at

a_
2

R
d

_D
at

a_
1

R
d

En W
r_

D
at

a

and

resp_k resp_l

1-write &
2-read
async
FIFO

Figure 4: Communication Interface Adapter Architecture
2) Response channel. Similarly, response channel adopts

an asynchronous FIFO with one write port and two read
ports, and the responses are read out of the FIFO pair by
pair. Another buffer follows the channel in case congestion
occurs when reading out results.

Moreover, the adapter resolves the issue due to the
broadcasting delay of the congest signal, as mentioned
in Section 3.2. When the congest signal is set by the
interface but has not reached the pipeline, the FIFO in
request channel temporarily buffers the requests. After the
congestion is resolved, the FIFO first sends out the buffered
memory requests, then releases the stall to the pipeline.

The adapter methodology is applicable for other CPU-
FPGA platforms. Specifically, Alpha Data board [18], IBM
CAPI [19] and Amazon F1 instance [20] provide 512-bit
memory ports, which aligns with the accelerator interface
very well. The frequency gap can then be addressed by the
asynchronous FIFOs in the design.

5. Experimental Evaluation
This section presents the experimental evaluation to the

proposed accelerator design. We first describe our experi-
mental setup (Section 5.1). Then we present the overall per-
formance and resource consumption of the proposed design,
and compare both with those of [10] (Section 5.2). Further-
more, we take a deeper look at the pipeline execution, with
a key focus on the pipeline efficiency (Section 5.3).

5.1. Experiment Setup
We use the Intel HARPv2 platform and the input comes

from a human genome sample (HCC1954 [21]), which

contains 1 billion reads, each with 101 basepairs. Our
accelerator works at 200 MHz and the interface adapter
bridges it with the 400 MHz HARPv2 interface. For the
software side, we adopt the batch processing methodology
used in [10] to process a large number of reads at a time.
We refer to the number of reads in a batch as batch size, a
key parameter to the pipeline efficiency.

5.2. Overall Performance and Resource Utilization
Table 1 lists the resource consumptions of the accelerator

for different batch sizes. The logic resource consumption
is nearly constant, but the RAM consumption grows sig-
nificantly as the batch size increases. This is because a
read batch with a larger size requires more BRAM to store
the input, intermediate data, and output. In comparison, the
state-of-the-art SMEM accelerator [10] uses 164,273 ALMs,
and SMEM++ uses only 57% as much logic resource.

Table 1: Resource Consumption of SMEM++
Batch Size Total ALMs Total RAM Bits

64 94,366 (22%) 3,616,494 (7%)
128 94,389 (22%) 4,923,833 (9%)
256 94,396 (22%) 7,538,756 (14%)
512 94,546 (22%) 12,769,103 (23%)
1024 94,874 (22%) 23,238,733 (42%)

Fig. 5 shows the performance of SMEM++ and off-chip
bandwidth usage. it achieves a throughput of 87.5 Mbp/s
and uses 11.2 GB/s off-chip bandwidth, outperforming [10]
by 6.3x with 43% less logic resource. Moreover, SMEM++
outperforms the single thread Xeon E5 2680 by 24x.

Figure 5: Overall Performance and Off-Chip Bandwidth Usage

Figure 6: Real-Time Bandwidth Usage

5.3. Pipeline Efficiency Analysis
When the SMEM++ works in the optimal status, it

utilizes a 25.6 GB/s off-chip bandwidth. However, it is
not always perfectly utilized in real execution due to the
following two factors. First, the off-chip bandwidth of the
platform may not meet the accelerator requirement. Second,
the pipeline will run out of jobs when it almost finishes
processing a batch of reads but a few reads are still there.
This is caused by the irregularity of the SMEM algorithm.
The number of operations needed by a read vary drastically
from a few tens to a few thousands. Those long-lasting reads
become a “long tail” at the end of the execution of a batch.

To demonstrate it, we randomly select a batch of 1024
reads, and measures the bandwidth usage and the “bubble”

cycles of the pipeline, i.e. cycles when there are no available
pipeline input and a void input (bubble) will be issued in-
stead. As Fig. 6 shows, at start the pipeline always performs
valid transactions, and the off-chip bandwidth remains at
about 14 GB/s, which reflects the maximal random access
bandwidth of HARPv2. When most reads have finished exe-
cution, the count of cycles without available input increases.
This also explains why SMEM++ favors a large batch size,
which amortizes the long tail overhead.

6. Conclusion and Future Work
In this paper we present SMEM++ to accelerate

the SMEM algorithm. SMEM++ features a non-blocking
pipeline with II = 1 and a communication interface adapter
to bridge the accelerator and underlying platform. SMEM++
outperforms the state-of-the-art SMEM accelerator by 6.3x,
with 43% less resource usage. We also analyze the pipeline
efficiency. The bandwidth limitation can be resolved with
future improvement on off-chip bandwidth. The “long tail”
is due to the irregularity of the algorithm, and can be
partially alleviated by batch processing. Another solution
is to dynamically send completed reads back to and load
new reads from memory. This remains as the future work.

Acknowledgement
This research is partially supported by the contribu-

tions from Intel and Huawei under the Center for Domain-
Specific Computing (CDSC) Industrial Partnership Program.
We would like to thank Intel for donating the Heterogeneous
Architecture Research Platform (HARP).
References
[1] J. Shendure and H. Ji, “Next-generation DNA sequencing,” Nature

biotechnology, 2008.
[2] J. Arram et al., “Leveraging FPGAs for accelerating short read

alignment,” TCBB, 2017.
[3] H.-C. Ng et al., “Reconfigurable acceleration of genetic sequence

alignment: A survey of two decades of efforts,” in FPL, 2017.
[4] “Illumina NGS.” [Online]. Available: https://www.illumina.com/

science/technology/next-generation-sequencing.html
[5] H. Li and N. Homer, “A survey of sequence alignment algorithms

for next-generation sequencing,” Briefings in bioinformatics, 2010.
[6] T. Smith and M. Waterman, “Identification of common molecular

subsequences,” Journal of Molecular Biology, 1981.
[7] H. Li, “Aligning sequence reads, clone sequences and assembly

contigs with BWA-MEM,” arXiv preprint arXiv:1303.3997, 2013.
[8] H. Li and R. Durbin, “Fast and accurate short read alignment with

Burrows–Wheeler transform,” Bioinformatics, 2009.
[9] H. Li, “Exploring single-sample SNP and INDEL calling with whole-

genome de novo assembly,” Bioinformatics, 2012.
[10] M.-C. F. Chang et al., “The SMEM Seeding Acceleration for DNA

Sequence Alignment,” in FCCM, 2016.
[11] D. Kroft, “Lockup-free instruction fetch/prefetch cache organization,”

in ISCA, 1981.
[12] J. Arram et al., “Reconfigurable acceleration of short read mapping,”

in FCCM, 2013.
[13] P. Gupta, “Accelerating datacenter workloads,” in FPL, 2016.
[14] E. Fernandez et al., “String matching in hardware using the FM-

index,” in FCCM, 2011.
[15] C. B. Olson et al., “Hardware acceleration of short read mapping,”

in FCCM, 2012.
[16] N. Ahmed et al., “Heterogeneous Hardware/Software Acceleration of

the BWA-MEM DNA Alignment Algorithm,” in ICCAD, 2015.
[17] “Intel HARP.” [Online]. Available: https://software.intel.com/en-us/

hardware-accelerator-research-program
[18] “Alpha Data - High Performance Reconfigurable Computing.”

[Online]. Available: https://www.alpha-data.com
[19] J. Stuecheli et al., “Capi: A coherent accelerator processor interface,”

IBM Journal of Research and Development, 2015.
[20] “Amazon EC2 F1 Instances.” [Online]. Available: https://aws.

amazon.com/ec2/instance-types/f1/
[21] A. F. Gazdar et al., “Characterization of paired tumor and non-tumor

cell lines established from patients with breast cancer,” IJC, 1998.

https://www.illumina.com/science/technology/next-generation-sequencing.html
https://www.illumina.com/science/technology/next-generation-sequencing.html
https://software.intel.com/en-us/hardware-accelerator-research-program
https://software.intel.com/en-us/hardware-accelerator-research-program
https://www.alpha-data.com
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/

	Introduction
	Background and Related Work
	Review of SMEM Seeding Algorithm
	FPGA Acceleration on Seeding Algorithms
	Intel HARPv2

	Non-blocking Pipeline Design
	Pipeline Module
	Function Module Reordering
	Unifying Forward/Backward Extensions

	Control Module
	Storage Module

	Communication Interface Adapter
	Compatibility Issue
	Adapter Implementation

	Experimental Evaluation
	Experiment Setup
	Overall Performance and Resource Utilization
	Pipeline Efficiency Analysis

	Conclusion and Future Work
	References

