
Polyhedral-Based Data Reuse Optimization
for Configurable Computing

Louis-Noël Pouchet,1 Peng Zhang,1 P. Sadayappan,2 Jason Cong1

1 University of California, Los Angeles {pouchet,pengzh,cong}@cs.ucla.edu
2 Ohio State University saday@cse.ohio-state.edu

ABSTRACT

Many applications, such as medical imaging, generate intensive data
traffic between the FPGA and off-chip memory. Significant im-
provements in the execution time can be achieved with effective
utilization of on-chip (scratchpad) memories, associated with care-
ful software-based data reuse and communication scheduling tech-
niques.

We present a fully automated C-to-FPGA framework to address
this problem. Our framework effectively implements data reuse
through aggressive loop transformation-based program restructur-
ing. In addition, our proposed framework automatically implements
critical optimizations for performance such as task-level paralleliza-
tion, loop pipelining, and data prefetching. We leverage the power
and expressiveness of the polyhedral compilation model to develop
a multi-objective optimization system for off-chip communications
management. Our technique can satisfy hardware resource con-
straints (scratchpad size) while aggressively exploiting data reuse.
Our approach can also be used to reduce the on-chip buffer size
subject to bandwidth constraint. We also implement a fast design
space exploration technique for effective optimization of program
performance using the Xilinx high-level synthesis tool.

Categories and Subject Descriptors

B.5.2 [Hardware]: Design Aids — optimization; D 3.4 [Program-

ming languages]: Processor — Compilers; Optimization

Keywords

Program Optimization; High-Level Synthesis; Data Reuse

1. INTRODUCTION
High level synthesis (HLS) tools for synthesizing designs spec-

ified in a behavioral programming language like C/C++ can dra-
matically reduce the design time especially for embedded systems.
While the state-of-art HLS tools have made it possible to achieve
QoR close to hand coded RTL designs from designs specified com-
pletely in C/C++ [5], considerable manual design optimization is
still often required from the designer [17]. To get a HLS friendly
C/C++ specification, the user often needs to perform a number of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’13, February 11–13, 2013, Monterey, California, USA.
Copyright 2013 ACM 978-1-4503-1887-7/13/02 ...$15.00.

explicit source-code transformations addressing several key issues
such as on-chip buffer management, choice of degree of parallelism
/ pipelining, attention to prefetching, avoidance of memory port con-
flicts etc., before designs rivaling hand coded RTL can be synthe-
sized by the HLS tool.

Our objective is to develop automated compiler support based
on the latest advances in polyhedral frameworks (e.g., [12, 38]) to
greatly reduce the human design effort currently required to create
effectively synthesizable specification of designs using HLS tools.
In particular, we develop compiler support for source-to-source trans-
formations to optimize critical resources such as memory bandwidth
to off-chip memory and on-chip buffer capacity. We present in this
article algorithms and tools to automatically perform the needed
loop/data transformations as well as effective design space explo-
ration techniques. Specifically, we make the following contribu-
tions.

1. A full implementation of a complete and automated technique
to optimize data reuse for a class of programs, for FPGAs.
This includes complete technique for dedicated on-chip buffer
management, that exploits the data reuse in the transformed
program.

2. A compile-time technique to automatically find communica-
tion schedules and on-chip buffer allocations to minimize the
communication volume under maximal buffer size constraint.

3. A framework for fast design space exploration of transforma-
tion candidates based on an available high-level synthesis tool
and leveraging the specifics of the optimization framework we
use.

The rest of the paper is organized as follows. Section 2 covers the re-
lated work. Section 3 presents our automated data reuse framework,
and Section 4 our buffer size/communication volume optimization
algorithm. Finally, Section 5 presents our fast design space explo-
ration framework and experimental results.

2. RELATED WORK
Design automation and optimization for data reuse have been

studied for decades. The data transfer and storage exploration (DTSE)
methodology [14, 15] is one of the milestones in this field. A data
reuse graph is introduced to express the possible data reuse candi-
dates between array references in the source program [28], where
a polyhedral model is used to analyze the data dependence. Then,
heuristics based on reuse buffer size and bandwidth reduction can
be applied to decide the allocation of the reuse candidates and their
memory hierarchy [13, 29]. A large body of previous work has
also considered data locality optimization, but focuses exclusively
on CPU and data caches optimization [8, 30, 39]. Loop transforma-
tions for data locality optimization are only an enabler for effective
on-chip data reuse. Numerous previous work for FPGAs and GPUs,
such as [9, 14, 15, 19, 24, 31], have considered automatic techniques

29

to promote memory references on-chip. However, previous work
had systemic limitations based either on the program representa-
tion used (which for instance only approximates the data accessed
by a reference), and/or constrained to managing an on-chip buffer
that corresponds precisely to a tile. Other work studied the power
of the polyhedral transformation framework for FPGA design. For
instance, DEFACTO combines a parallelizing compiler technology
(SUIF) with early hardware synthesis tools to propose a C-to-FPGA
design flow [21, 36], and MMAlpha [25] focused on systolic de-
signs. These works illustrated the benefit of using advanced com-
piler technologies for memory optimization and parallelization anal-
ysis. However, to the best of our knowledge, none of those frame-
works consider a space of program transformation as large as ours,
and/or have limited loop tiling capabilities. Bayliss et al. [11] used
the polyhedral model to compute an address generator exploiting
data reuse, however they do not consider any loop transformation
and therefore do not restructure the program to better exploit its in-
herent data locality potential. In contrast, loop transformations for
improving data locality is the starting point of our framework.

Tiling in particular is a crucial loop transformation for data local-
ity improvement, and is one key transformation used in our frame-
work. As an illustration, on a matrix-multiply example previous
work by Cong. et al using only loop permutation, (limited) loop
skewing, and loop fusion/distribution reduces the communication
volume from 3.N3 to N3, using a buffer of size 2.N [19]. Using
a simple square tiling with tile size T reduces the communication
volume to to roughly N3/T 2, for a buffer of size T 2, and even bet-
ter solutions can be achieved with rectangular tiles, as used in this
paper. However in [19], finer-grain data reuse opportunities are ex-
plored in a combined problem searching for buffer allocation and
loop transformation simultaneously, which can lead to even smaller
buffer sizes than achievable by our present work. Loop tiling of-
ten requires a complex sequence of complementary loop transfor-
mations such as skewing, fusion/distribution, shifting, etc., to be
applied [6, 12, 27, 40], and finding such sequence is a challenging
problem. In this work, we address it in an automatic fashion by
using the Tiling Hyperplane scheduling method, which is geared to-
wards maximizing data locality and program tilability [12].

Recently, the importance of considering platform-dependent cost
modeling in optimizing the loop transformation has been empha-
sized [32, 41]. Loop transformation and data reuse optimization are
loosely coupled by introducing fast hierarchical memory size esti-
mators [26, 33] to evaluate the promising transformations. But the
search process lacks an analytic model for guidance, which makes it
inefficient to search a large transformation space. Previous work
tries to establish analytic optimization formulations for the com-
bined problem, such as optimizations of loop tiling parameters and
reuse buffer selections are formulated into quadratic programming
[9] and geometric programming [31] respectively. Alias et al. uses
tiling and prefetching to reduce the memory traffic [7], focusing on
the Altera tool-chain. They proposed a formulation for the prefetch-
ing problem and the pipelining of communications, but their ap-
proach does not consider the balance between communication vol-
ume and scratchpad size/energy, nor any design-space exploration,
contrary to the present work.

3. AUTOMATIC DATA REUSE FRAMEWORK

3.1 Overview of the Method
In our framework, we perform a multi-stage process to automati-

cally optimize C programs for effective execution on a FPGA. Our
approach uses design-space exploration to determine the best per-
forming program variant. Specifically, we search for best perfor-

mance through the evaluation of different rectangular tile sizes. Our
framework is built so that different tile sizes lead to different pro-
gram candidates, with distinct features in terms of the communica-
tion schedule, buffer size, loop to be tiled (e.g. when a tile size of 1
is used for this loop), etc. Each candidate is built as follows.

1. We first transform the input program, using polyhedral loop
transformations. The objective is to restructure the program
so that data locality is maximized (e.g., the "time" between
two accesses to the same memory cell is minimized), and at
the same time the number of loops that can be tiled is maxi-
mized. This is presented in Section 3.2. Tilable loops are tiled
using a tile size given as input.

2. We then promote all memory accesses to on-chip buffers in
the transformed program, and automatically generate off-chip
/ on-chip communication code. Data reuse between consecu-
tive iterations of a loop is automatically exploited. This is pre-
sented in Section 3.3. The hardware constraints on the maxi-
mal buffer size are automatically satisfied, using a lightweight
search algorithm that trades off communication volume for
buffer size. This is presented in Section 4.

3. We conclude the code transformation process by performing
a set of HLS-specific optimizations, such as coarse-grain and
fine-grain/task-level parallelism extraction. This is presented
in Section 3.4.

3.2 Polyhedral Loop Transformations
Unlike the internal representation that uses abstract syntax trees

(AST) found in conventional compilers, polyhedral compiler frame-
works use an internal representation of imperfectly nested affine
loop computations and their data dependence information as a col-
lection of parametric polyhedra, this enables a powerful and expres-
sive mathematical framework to be applied in performing various
data flow analysis and code transformations.

Significant benefits over conventional AST representations of com-
putations include the effective handling of symbolic loop bounds
and array index function, the uniform treatment of perfectly nested
versus imperfectly nested loops, the ability to view the selection of
an arbitrarily complex sequence of loop transformations as a sin-
gle optimization problem, the automatic generation of tiled code for
non-rectangular imperfectly nested loops, etc.

3.2.1 Polyhedral Program Representation

The polyhedral model is a flexible and expressive representation
for loop nests with statically predictable control flow. Loop nests
amenable to this algebraic representation are called static control

parts (SCoP) [22, 23], roughly defined as a set of consecutive state-
ments such that loop bounds and conditionals involved are affine
functions of the enclosing loop iterators and variables that are con-
stant during the SCoP execution (whose values are unknown at compile-
time). Numerous scientific kernels exhibit those properties; they
can be found typically in image processing filters (such as medical
imaging algorithms) and dense linear algebra operations.

1 for (t = 0; t < T; ++t) {

2 for (i = 1; i < N-1; ++i)

3 for (j = 1; j < N-1; ++j)

4 R : B[i][j] = 0.2*(A[i][j-1] + A[i][j] + A[i][j+1]

5 + A[i-1][j] +A[i+1][j]);

6 for (i = 0; i < N; ++i)

7 for (j = 0; j < N; ++j)

8 S : A[i][j] = B[i][j];

}

Figure 1: Jacobi2D example

30

First, a program is analyzed to extract its polyhedral represen-
tation, including iteration domain, access pattern and dependence
information.

Iteration Domains. For all textual statements in the program,
for example R in Figure 1, the set of its dynamic instances is cap-
tured with a set of affine inequalities. When the statement is en-
closed by loop(s), all iterations of the loop(s) are captured in the
iteration domain of the statement. Considering the jacobi2D kernel
in Figure 1, the iteration domain of R is:

DR = {(t, i, j) ∈ Z
3 | 0≤ t < T∧1≤ i < N−1∧1≤ j < N−1}.

The iteration domain DR contains only integer vectors (or, integer
points if only one loop encloses the statement R). The iteration

vector ~xR is the vector of the surrounding loop iterators; for R it
is (t, i, j) and takes values in DR. Each vector in DR corresponds
to a specific set of values taken by the surrounding loop iterators
(starting from the outermost to the innermost enclosing loop itera-
tor) when R is executed.

Access functions. They represent the location of the data ac-
cessed by the statement. In SCoPs, memory accesses are performed
through array references (a variable being a particular case of an ar-
ray). We restrict ourselves to subscripts of the form of affine expres-
sions which may depend on surrounding loop counters and global
parameters. For instance, the subscript function for the read refer-
ence A[i-1][j] of statement R is simply fA(t, i, j) = (i−1, j).

The sets of statement instances between which there is a producer-
consumer relationship are modeled as equalities and inequalities in
a dependence polyhedron. This is defined at the granularity of the
array cell. If two instances ~xR and ~xS refer to the same array cell
and one of these references is a write, then they are said to be in
dependence. Therefore to respect the program semantics, the trans-
formed program must execute~xR before~xS. Given two statements R

and S, a dependence polyhedron, written DR,S, contains all pairs of
dependent instances 〈~xR,~xS〉.

Multiple dependence polyhedra may be required to capture all
dependent instances, at least one for each pair of array references
accessing the same array cell (scalars being a particular case of ar-
ray). It is possible to have several dependence polyhedra per pair of
textual statements, as some may contain multiple array references.

3.2.2 Program Transformation for Locality and Par-
allelism

The next step in polyhedral program optimization is to compute a
transformation for the program. Such a transformation captures, in
a single step, what may typically correspond to a sequence of sev-
eral tens of textbook loop transformations [23]. It takes the form of
a carefully crafted affine multidimensional schedule, together with
(optional) iteration domain or array subscript transformations.

In order to expose coarse-grain parallelization as well as data
locality optimizations, we first compute a polyhedral transforma-
tion which is geared towards maximizing data locality while expos-
ing coarse-grain parallelism when possible. This optimization is
implemented via a possibly complex composition of multidimen-
sional tiling, fusion, skewing, interchange, shifting, and peeling.
It is known as the Tiling Hyperplanes method [12]. The Tiling
Hyperplane method has proved to be very effective in integrating
loop tiling into polyhedral transformation sequences [12,27]. Bond-
hugula et al. proposed an integrated optimization scheme that seeks
to maximally fuse a group of statements, while making the outer
loops permutable (i.e., tilable) [12] when possible. A schedule is
computed such that parallel loops are brought to the outer levels,

if possible. This technique is applied on each SCoP of the pro-
gram. When coarse-grain parallelism is exposed (such as pipelined
tile parallelism), we automatically exploit it to support concurrent
execution on the FPGA.

From a data reuse standpoint, the Tiling Hyperplane method sched-
ules iterations that access the same data elements as close to each
other as possible, maximizing temporal data locality under the frame-
work constraints. We note that the Tiling Hyperplane method at-
tempts to maximize the number of loops that can be tiled, but oper-
ates seamlessly on non-tilable (or non-fully tilable) programs, also
maximizing locality in those cases. In our framework, loop tiling is
applied on the set of loop nests that are made permutable after ap-
plying the Tiling Hyperplane method. Finally, Syntactically correct
transformed code is generated back from the polyhedral representa-
tion, and this code scans the iteration spaces according to the sched-
ule we have computed with the Tiling Hyperplane method. We use
the CLOOG, a state-of-the-art code generator [10] to perform this
task.

3.3 Automatic On-Chip Buffer Management
Most ICs, especially embedded systems, use on-chip buffer mem-

ories for fast and energy-efficient access to the most frequently used
data. For FPGAs, the total data for the application is much larger
than on-chip memory capacity. In contrast to general-purpose pro-
cessors that use hardware-managed caches to hold frequently ac-
cessed data, the use of on-chip buffers with explicit copy-in and
copy-out of data is a key optimization for embedded systems [18].
By storing frequently accessed data in the on-chip buffer, the band-
width contention is decreased, and the overall performance increases
significantly as the latency of accessing on-chip data is significantly
faster than off-chip accesses. In the following we present a fully
automated approach for on-chip buffer management that consists of
promoting to local memory (e.g., the on-chip buffer) all memory
references in the program.

Promoting the entire data accessed by a program to local mem-
ory is often infeasible, in particular for FPGA design where the on-
chip buffer resource is limited. Therefore, we want to enable the
promotion all program references to an on-chip buffer, while still
controlling its size. We chose to solve this problem by using the
granularity of the loop iteration, for any of the loops in the program.
That is, given an arbitrary loop in the program (which may very well
be surrounded by other loops), our technique will compute the mini-
mal on-chip buffer size requirement and associated communications
to execute one iteration of this loop, while exploiting the reuse be-
tween consecutive iterations of said loop. This implicitly offers a
lot of freedom for the on-chip buffer size. By considering the inner-
most loop, its size will be similar to the number of registers required
to execute the computation. By considering the outermost loops it
will be equivalent to the entire data space of the program. Any loop
in-between will trade off communication count for on-chip buffer
size (and its associated static energy).

For example, in Figure 1 if we put on-chip the data accessed by
one full execution of the j loop in line 3 (that is exactly one iteration
of the i loop), we need to store the ith row of A and B, as well as
the (i−1)th and (i+1)th rows of A, leading to a buffer requirement
of 4.N. This buffer must be filled for each iteration of the i loop,
that is roughly T.N times (total communication volume is roughly
4.N2.T). Putting on-chip the full computation (that is, along the t

loop on line 1) leads to a 2.N2 buffer requirement, but to be filled
only once (total communication volume is reduced to 2.N2). So,
the trade-off here is between a buffer size N times smaller versus
a communication volume increase of 2.T . Below, we show how to
build better solutions exploiting reuse across executions of a loop.

31

3.3.1 Parametric Data Spaces for On-Chip Buffer Sup-
port

We now present our formalization to effectively promote mem-
ory references for on-chip buffer usage. Our technique operates on
each array individually, and promotes optimally (under the frame-
work constraints) all references to this array into a dedicated on-
chip buffer for this array. Our approach is based on the concept of
parametric polyhedral sets to express the set of data elements being
used at various specific points of the computation. Those sets corre-
spond exactly to the data to be communicated, reused, or stored. We
then use a polyhedral code generator to scan those sets, and prop-
erly modify the program by inserting the code that scans commu-
nications sets, and change main memory references in the modified
source code to on-chip buffer references.

We first define the data space of an array A for a program. The
data space is simply the set of all data elements accessed through the
various access functions referencing this array, for each value of the
surrounding loop iterators where the reference is done. We use the
concept of the image of a polyhedron (e.g., the iteration domain)
by an affine function (e.g., the access function). The image of a
polyhedron D by an affine function F is defined as the set {~y | ∀~x ∈
D , F(~x) =~y}.

DEFINITION 1 (DATA SPACE). Given an array A, a collection

of statements S , and the associated set of memory references FA
S

with S ∈ S , the data space of A is the set of unique data elements

accessed during the execution of the statements. It is the union of

the image of the iteration domain by the various access functions:

DS(A) =
⋃

S∈S

Image(FA
S ,D S)

We remark that DS(A) is not necessarily a convex set, but can still
be manipulated with existing polyhedral libraries. For example, in
Figure 1, the data space of DSR(B) for the first statement (R : line
4) is the 2-dimensional square set going from 1 to N − 2 in each
dimension. But for the second statement (S : line 7), DSS(B) is the
2D square set going from 0 to N. As we make the union, it means
DS(B) is the 2D square set going from 0 to N in each dimension.

In order to capture the data accessed at a particular loop level,
we must fix the value of the surrounding loop iterators to a certain
value in the data space expression, while preserving all inner loop
iterations. For the data space computation to be valid for any execu-
tion of this loop (nest), we resort to using parametric constants (i.e.,
whose value is fixed but unknown) in the formulation. All sets and
expressions computed will be parametric forms of those constants,
and therefore valid for any value these constants can take; they will
consequently be valid for any value the surrounding loop iterators
can take during the computation.

We first define the parametric domain slice, that will be the en-
abler for defining the data space of a loop iteration.

DEFINITION 2 (PARAMETRIC DOMAIN SLICE). Given a loop

nest with a loop l of depth n surrounded by k− 1 loops, and an

integer constant α, the parametric domain slice (PDS) of loop l is a

subset of Zn defined as follows:

Pl,α = {(x1, . . . ,xn) ∈ Z
n|x1 = p1, . . . ,xk−1 = pk−1,xk = pk +α}

where p1, . . . , pn are parametric constants unrestricted on Z.

For example, for loop i in line 3 of Figure 1, we have:

Pi,1 = {(t, i, j) ∈ Z
3|t = p1, i = p2 +1}

This is a (parametric) set of 3D integer points with the first two com-
ponents of each point always having the same (parametric) values.

This set contains an infinite number of points, as the third compo-
nent takes any value in Z.

We can now adapt the definition of a data space to the subset of
data which is accessed by a loop iteration.

DEFINITION 3 (DATA SPACE OF A LOOP ITERATION). Given an

array A, a collection of statements S surrounded by a loop l and

their associated set of memory references FA
S with S ∈ S ′, and ~Pl,0 a

PDS for loop l, the data space of A is the set of unique data elements

accessed during one iteration of l:

DS(A,~Pl,0) =
⋃

S∈S

Image
(

FA
S ,

(

D S∩Pl,0

)

)

To illustrate the power and generality of this approach, in Figure 2
we show the sets DS(A,~Pj,0) (left) and DS(A,~Pj,−1) (center), the
data space of the immediately preceding iteration, for the first j loop
(line 3) in the Jacobi2D example. By computing the difference or
intersection between those sets (right), we can capture naturally the
data reused between two consecutive iterations, as well as the data
that is not alive at the previous iteration.

i i+1 i+2i-1i-2

j

j+1

j+2

j-1

j-2

⋂

i i+1 i+2i-1i-2

j

j+1

j+2

j-1

j-2

=

j j+1 j+2j-1j-2

i

i+1

i+2

i-1

i-2

i i+1 i+2i-1i-2

j

j+1

j+2

j-1

j-2

−

i i+1 i+2i-1i-2

j

j+1

j+2

j-1

j-2

=

j j+1 j+2j-1j-2

i

i+1

i+2

i-1

i-2

Figure 2: Computation of the Reuse (top) and PerIterC (bottom)

sets for the j loop of jacobi2D

Formally, the reused data space between consecutive iterations of
a loop is defined as follows. All data which is reused does not need
to be communicated at the next iteration.

DEFINITION 4 (REUSE SPACE). Given an array A, and ~Pl,0

and ~Pl,−1 two PDS for loop l, the reused data space between two

consecutive iterations of l is:

Reuse(A,~Pl,0) = DS(A,~Pl,−1)∩DS(A,~Pl,0)

The communication required for each loop iteration is defined as
follows. It consists in only the data elements that were not accessed
by the previous iterations.

DEFINITION 5 (PER-ITERATION COMMUNICATION). Given an

array A, and ~Pl,0 a PDS for loop l, then assuming the data reused

between two consecutive iterations is still in local memory, the data

space required to communicate in order to compute a given iteration

of l is:

PerIterC(A,~Pl,0) = DS(A,~Pl,0)−Reuse(A,~Pl,0)

Finally, to ensure that for the first loop iteration, all data is ready
in the on-chip buffer, we must communicate the per-iteration data
set but also initialize the on-chip buffer with the reuse set at the first
loop iteration, as no previous iteration has already loaded the data.

DEFINITION 6 (INITIALIZATION). Given an array A, the data

to be stored in the buffer before the loop starts is:

Init(A, l) = Reuse(A,~Pl,c)

32

with c = lb(l)− pk, where lb(l) is the lower bound expression of the

loop l and pk is the parameter associated with the loop l.

It is also required to store back to main memory any data element
that is produced. This is captured by the copy-out set as defined
below.

DEFINITION 7 (PER-ITERATION COPY-OUT). Given an array

A and ~Pl,0 a PDS for loop l, the copy-out set CopyOut(A,~Pl,0) stor-

ing written data in on-chip buffer back to main memory is the data

space DSw(A,~Pl,0) which considers only the access functions FA
S

that correspond to written references.

We remark that as our framework computes the data reuse only
between two consecutive iterations, it does not necessarily capture
all the reuse potential in a loop nest. In particular, reuse between
two non-consecutive iterations (e.g., A[3i] and A[3i+6]) is not ex-
ploited. We believe that is is not a strong limitation in practice, as
those cases only rarely occur, especially after having applied the
Tiling Hyperplane method to transform the original program.

3.3.2 Code Generation

Local buffer computation. The polyhedral set defining the buf-

fer requirement for a given loop l is DS(A,~Pl,0). We take a simple
approach, which is based on computing the rectangular hull of DS

(that is, the smallest rectangle that contains the set DS). It offers
the advantage of generating a simple code with equally simple ac-
cess functions. On the other hand, space can be wasted in particu-
lar when DS is not convex and contains holes, and/or when DS is
a skewed parallelogram. In our experiments, buffer sizes of up to
2× the minimal required size have been allocated, due to this over-
approximation. Optimal allocation techniques do exist [20], and we
plan to investigate their implementation as future work.

We compute the rectangular hull of DS(A,~Pl,0) dimension by di-
mension, using the following formula, for each dimension i:

dimi = pro ject(rectangularHull(DS(A,~Pl,0)), i)

bsi = lexmax(dimi,1)− lexmin(dimi,1)

where pro ject(DS, i) projects the set DS onto the dimension i, and
lexmax(dimi,1) returns the coordinate of the extremal (maximal)
point of the one-dimensional set dimi. We remark that this stage,
this coordinate and the entire sets are parametric forms of the loop
bounds.

Code generation algorithm. Because of our generalized for-
malism above, the communication scheduling and final code gen-
eration has become straightforward. Our algorithm for the local
memory promotion of an array at a given loop is shown in Fig-
ure 3. Function createLocalBufferDecl creates a declaration to a
local buffer of same data type as the argument array, and its size
is computed as the rectangular hull of the argument set. Function
createScanningCodeIn creates an imperative C program that scans
all elements of the polyhedral set given as an argument. For each
point in this set, a statement A_l[i%bsi].. = A[i].. (or the op-
posite assignment for createScanningCodeOut) is executed, where
bsi is the buffer size along dimension i. All parameters pi introduced
by the PDS used are replaced with the loop iterator variable symbol
they were assigned to. convertGlobalToLocalRef replaces all refer-
ences to the original array with references to the local array, using
modulo indexing similar to the copy statement above.

Correctness of the algorithm. Our algorithm is robust to any
value taken by the loop iterator for which the buffer communication

LocalMemoryPromotion:

Input:

A: array to promote

l: loop along which A is promoted

Output:

l: in-place modification of l

1 Al ← createLocalBu f f erDecl(A, DS(A, l))
2 pre ← createScanningCodeIn(Al , Init(A, l))
3 pic ← createScanningCodeIn(Al ,PerIterC(A, l))
4 wout ← createScanningCodeOut(Al ,WriteOut(A, l))
5 convertGlobalToLocalRe f (l,A,Al)
6 insertFirstInLoopBody(l, pic)
7 insertLastInLoopBody(l,wout)
8 prependBlock(l, pre)
9 prependBlock(getEnclosingFunc(l),Al)

Figure 3: Code generation algorithm for a loop l

is computed, per virtue of the PDS mechanism. As a consequence,
simply translating the various sets described above for each value
of the surrounding and current loop iterators is sufficient to capture
exactly the data accessed by each iteration. We also note that this
algorithm is a data layout transformation only: the scheduling of the
operations remains unchanged after application of the local memory
promotion pass. Finally, to ensure correctness we write back all data
elements written during a loop iteration at the end of the iteration.
While there are occurrences where a lower amount of write com-
munications may be performed, such as with reduction loops, this
ensures that an element being written and then accessed at a much
later iteration will hold the correct value.

3.4 HLS-Specific Optimizations
Despite very significant advances in HLS, a variety of comple-

mentary source-level transformations are often needed to produce
the best result. In particular, fine-grain parallelism exposure and ex-
plicit overlapping of computation and communications dramatically
impacts the performance. We leverage the power of the polyhedral
model to precisely capture all sources of parallelism, reorganize the
computation to pack sequential tasks together and recognize sets of
parallel tasks, and produce a fine-grain task dependence graph that
is used for task scheduling by the HLS tool.

3.4.1 Communication Prefetching and Overlapping

It is critical to properly overlap communication and computation,
in order to minimize the penalty of data movements. A common
technique is to prefetch in advance the data that will be required later
by the computation. Following our paradigm of managing commu-
nications at the loop iteration level, the set of data elements that
should be prefetched at the current iteration is defined as follows.

DEFINITION 8 (COMMUNICATION PREFETCH). Given an ar-

ray A, and ~Pl,0 and ~Pl,1 two parametric iteration vectors for loop l,

the data that needs to be communicated to execute the next iteration

is:

Pre f etch(A,~Pl,0) = PerIterC(A,~Pl,1)

When operating on tiled programs, we remark that if the loop along
which we bufferize is a tile loop, this set corresponds to the data
set being used by the next tile, minus elements which are reused
between consecutive tiles. Therefore inter-tile reuse between con-
secutive tiles is automatically captured in our framework.

This set is scanned at the beginning of the current loop iteration,
and the associated code segment is put in a dedicated function (i.e.,
a task) that can be executed in parallel with the rest of the loop

33

iteration that has also been put in a dedicated function.1 In terms of
storage, one can implement a simple double-buffer for the PerIterC

and Pre f etch sets, with a buffer swap at the beginning of each loop
iteration.

3.4.2 Loop Pipelining and Task Parallelism

One of the most important hardware optimizations for high-per-
formance RTL design leverages the fine-grain parallelism available
in the program. Loop pipelining pipelines consecutive iterations of
the loop, and this amounts to executing loop iterations in parallel
if the loop is synchronization-free. In this work we automatically
apply post-transformations to expose parallelism at the innermost
loop level, if possible. Previous work on SIMD vectorization for
affine programs has proposed effective solutions to expose inner-
loop-level parallelism [12, 37], and we seamlessly reuse those tech-
niques to enable effective loop pipelining on the FPGA. This is
achieved by using additional constraints during and after the tiling
hyperplanes computation, to preserve one level of inner parallelism.
As a result, we mark all innermost loops with a specific #pragma

AP pipeline II=1, and let the HLS tool find the best II it can
for this loop. And for all innermost parallel loops, we also insert
#pragma AP dependence inter false pragmas for all variables
which are written in the loop iteration, to prevent conservative de-
pendence analysis.

There exists a significant amount of parallelism inside loop itera-
tions, in particular when prefetching is implemented. That is, some
operations inside a loop iteration can be executed concurrently, and
synchronization is (possibly) required at the end of the loop iter-
ation. Such parallelism can be captured effectively in the poly-
hedral representation by focusing the analysis on the modeling of
the possible order of statements within an iteration of a given loop.
We implemented this analysis as a post-pass, after polyhedral code
generation for the parallelism/locality extraction. Polyhedral trans-
formations may indeed expose more task-level parallelism inside a
loop iteration after code generation (precisely, after the separation
step [10]) has been been performed. Focusing on a single loop at
a time by using the appropriate PDS, we are able to automatically
compute a graph of dependent operations within a given iteration
of the loop body. This dependence graph is used to restructure the
code as a collection of separate functions with distinct arguments
for functions/tasks that can be run in parallel.

3.4.3 Additional Optimizations

Finally, we have implemented a series of complementary opti-
mizations that have a significant impact on the performance of the
final design. Specifically, we implemented a simple common sub-
expression elimination, loop bound normalization [8], simplification
and hoisting, and a simplification of the circular buffer access func-
tions. Indeed, affine loops generated increment by stride of 1, and
modulo expressions can easily be replaced by a simple loop incre-
ment and a test against the modulo value at the end of each loop
iteration.

4. MANAGEMENT OF ON-CHIP BUFFER

RESOURCE CONSTRAINTS
The algorithm presented above to compute communications and

the associated on-chip buffer size is designed to work seamlessly for
any loop in the program. We now show how to leverage the general-
ity of this approach to transform any affine program to use on-chip
memory for all computations, while meeting any user-defined re-
source constraint on the maximal on-chip buffer size. We proceed

91AutoESL is able to exploit task-level parallelism in this case.

in two steps: first we present how to build the solution space, and
then we show how to find an optimal solution satisfying both band-
width minimization and buffer size requirement.

4.1 Search Space Construction
The first step is to build the set of possible solutions for each array

and each loop in the program. This is shown in Figure 4. In order to
build the solution set, we simply apply the process described in the
previous section for each arrays and each loop individually. That is,
for the cross-product of all arrays and loops, we produce a tuple con-
taining the buffer size requirement (BS) if bufferizing this specific
array along this specific loop, and the bandwidth requirement (BW).
BS is computed using the formula shown in Section 3.3.2, and BW is
computed as the product of the cardinality of the PerIterC set by the
number of executions of the loop, which can be exactly computed at
compile-time for SCoPs, as later shown in Section 5.

BuildSolutionSet:

Input:

P: input SCoP

Output:

solset: solution set for loop selection

solset ← createEmptySetofTuples

forall arrays a in P do

forall loops l in P do

ldup ← cloneAST(l)

LocalMemoryPromotion(a,ldup)

BS ← getBufferVolume(ldup)

BW ← getCommVolume(ldup)

insertTuple(solset,{a,l, (BW,BS)})

end do

end do

return solset

Figure 4: Create solution space

By design of the algorithm, the number of possibilities is very
tractable. It is the product of the number of loops in the program
by the number of arrays; in practice most of the time for SCoPs this
number is below 100. Our implementation is very fast, and comput-
ing all solutions is achieved in a matter of seconds for complex tiled
3D stencil programs.

We note that in order to guarantee correctness for the case of im-
perfectly nested loops, we enforce that, for a given array, all loops
at a same nesting level are bufferized. This may lead to conservative
solutions, but greatly simplifies the code generation process.

4.2 Optimization Problem
We seek a solution that will systematically satisfy the objective

that the sum of the buffer sizes required does not exceed the avail-
able on-chip resources (e.g., the number of BRAMs). That is, we
want to find the loops l for all arrays a such that:

∑
a∈Arrays(P)

BS(a, l)< maxBuffSize

We note that as soon as the largest data space of a single iteration
of the inner loops (that is usually in the order of the number of reg-
isters required to execute the iteration, assuming no spilling) is be-
low maxBuffSize, our algorithm will find a solution. In practice, the
number of BRAMs available on-chip is significantly larger than the
number of registers required to execute a single iteration; hence our
method will always find a valid solution.

Satisfying the above constraint let us find a solution that will meet
hardware resource limitations. In order to find an (optimal) solution,
we need to add the optimization objective. In this work we choose to
minimize the bandwidth requirement (i.e., the communication vol-

34

ume). We note that this solution relates only to the communication
scheduling, for a given fully specified program. We aim here at
computing a valid generated code for a given tiled program whose

tile sizes have been already set. The problem of finding a final so-
lution that will maximize bandwidth usage is addressed in the next
section, and is framed as a tile size selection problem, solved us-
ing fast design-space exploration techniques. The final constrained
bandwidth minimization problem is stated as:

minimize ∑
a∈Arrays(P)

BW(a, l)

s.t. ∑
a∈Arrays(P)

BS(a, l)< maxBuffSize

Solving this problem is achieved by repeatedly scanning the solu-
tion set obtained with BuildSolutionSet. For each array and each
loop we compute the total bandwidth and buffer size requirement
to find the solution with minimal bandwidth that meets the buffer
size constraint. The complexity of finding the optimal solution is
nd , where n is the number of loops in the program and d the num-
ber of arrays. Despite being an exponential solver, in practice it is
extremely fast. For instance a 3D image processing algorithm we
tested has 12 loops and 4 arrays, leading to computing about 20,000
sums of 4 elements, which is done in a negligible time on modern
processors. For too large spaces, one can implement approximate
solving heuristics based for instance on dynamic programming. No
such case has been encountered in our test suite.

5. DESIGN SPACE EXPLORATION

5.1 Methods for Fast DSE
Our objective is to enable quality of result (QoR) computation by

AutoESL without having to resort to complete synthesis/simulation,
in order to speed up the design-space exploration phase. This is
particularly important for our method as we employ DSE to search
the space of possible tile sizes, for tilable programs.

5.1.1 Capturing the Exact Control Flow

In order to obtain accurate metrics from AutoESL RTL latency
estimator, we must provide it with complete information about each
loop in the program. The loop trip count (minimal, average and
maximal) of a loop must be provided for each and every loop to be
mapped to the FPGA. While for general programs it is impossible
to accurately compute the loop trip count at compile-time, this is
not an issue with SCoPs as addressed in this paper. As the con-
trol flow is static and therefore not data dependent, we can compute
the number of times each statement in the loop body is executed,
thus deducing the trip count of the surrounding loop. This is a criti-
cal benefit of manipulating SCoPs: design-space exploration can be

accurately achieved without synthesizing/running or simulating the

application. We use again our concept of PDS to capture the trip
count of a statement in the following formula.

DEFINITION 9 (STATEMENT TRIP COUNT FOR A LOOP). Given

a statement S surrounded by a loop l, and ~Pl,0 a parametric iteration

vector, the trip count (noted STC) of l for S is:

D S,l = D S∩Pl,0

STC(D S, l) = lexmax(D S,l ,k+1)− lexmin(D S,l ,k+1)

where k is the number of loops surrounding l dimension.

The computation of the minimal and maximal trip count of a loop
follows naturally.

DEFINITION 10 (LOOP TRIP COUNT). Given a loop l and a

collection S l of statements surrounded by l. The minimal and maxi-

mal trip count of l are given by:

TCmin(l) = min
S∈S l

(STC(D S, l)) TCmax(l) = STC((
⋃

S∈S l

D S), l)

This trip count computation is performed for each loop of the pro-
gram. We note that as we have described the communication sets in
a purely polyhedral fashion, loops introduced to scan the various
data sets are necessarily following the static control flow require-
ments, and can be exactly analyzed at compile-time. When entering
the final design space exploration stage, only numerical values can
be provided to AutoESL to represent the loop trip count. At this
stage, parameters (such as problem size, etc.) are inlined to their
numerical value, leading to simple scalar expressions for the loop
trip count.

5.1.2 Accurate Memory Latency Estimation

Off-chip SDRAM memory access has a high latency and limited
bandwidth. To fully utilize the memory bandwidth, we use two FI-
FOs as to bufferize (a) the memory requests and (b) the fetched data,
and access the off-chip memory in bursts. AutoESL does not na-
tively model the latency consumed by off-chip memory accesses.
To model this latency and throughput of the off-chip accesses, we
modify the functions scanning the various communication sets. We
insert cycle-wasting operations to emulate the time spent doing the
corresponding off-chip accesses.

A property of our approach is that communications are executed
in bursts, for each array and set to be scanned. So, at the beginning
of each chunk of off-chip accesses we insert a burst_wait() func-
tion call, which corresponds to the burst time overhead (startup la-
tency). We also insert data_wait() function calls for each word ac-
cess. We have implemented these functions to force the design of a
p-cycle long operation in the critical path of the function, so that Au-
toESL will count the additional latency introduced by burst_wait()
and data_wait() in the final execution latency report, so as to em-
ulate the time taken by transferring data to/from off-chip memory.
In our experiments, we have micro-benchmarking on the Convey
HC-1ex, and obtained p = 131 cycles for the burst waiting time, and
p = 1.15 cycles for the per-word access time. Using this mechanism
we accurately capture the bandwidth throughput per communication
FIFO in our target platform.

5.1.3 Communication/Computation Functions

Finally, in order to effectively exploit the FIFO communication
mechanism, and in order to simplify the DSE method, we perform
a final AST-based transformation to the generated program. First,
we create a communication prefetch function by cloning the en-
tire program generated by the previous algorithms and removing
all loops/code segments that do not relate to off-chip/on-chip com-
munication. We then replace all communications by non-blocking
FIFO send requests. That is, all requests are sent as fast as possible
until the request buffer of the FIFO module is full (the number of
in-fly requests is limited by the implementation), which makes the
prefetch function wait.

Second, we modify the transformed program (that contains the
actual computations) such that all communications are blocking FIFO
receive requests. That is, until the data is available on the FIFO, the
program will wait. We finish by encapsulating the program in a
computation function.

We conclude the transformation process by calling the commu-
nication prefetch and computation functions simultaneously in the
main FPGA function, so that communication prefetch and compu-
tation are perfectly overlapped. We note that for the fast DSE ap-

35

proach, the cycle wasting functions are inserted in the prefetch func-
tion, thus emulating the time taken to transfer the data from off-chip
memory to the FIFOs.

5.2 Experimental Results

5.2.1 Implementation Details

The entire tool-chain presented in this paper has been fully im-
plemented as an open-source software, PolyOpt/HLS.2 Specifically,
we have based our work on the PolyOpt/C polyhedral compiler [34]
we have implemented, which is itself based on the LLNL ROSE
source-to-source compiler; and on PoCC, the Polyhedral Compiler
Collection [4] we have implemented. All polyhedral operations are
performed using Sven Verdoolaege’s ISL library [38], and we use
CLooG [10] for the polyhedral code generation part. Starting from
an input sequential C program to be executed on the CPU, our tool-
chain automatically extracts regions where the framework can be
applied, performs data locality, parallelization and tiling loop trans-
formations, local memory promotion and all the additional HLS-
specific optimizations mentioned above. Each SCoP is mapped to
the FPGA, using a custom FIFO data management module.

5.2.2 Experimental Setup

Target FPGA platform. We design the optimized codes for a
multi-FPGA platform Convey HC-1ex [2], which provides four Xil-
inx Virtex-6 FPGAs (xc6vlx760-1-ff1760) and total bandwidth up to
80GB/s. We use the Xilinx ISE toolchain, version 14.2, which has
been validated by Convey for the HC-1. For HLS, we use AutoESL,
version 2011.4 [3]. The RTL is connected to memory interfaces and
control interfaces provided by Convey, which have been designed
to operate at 150MHz. Hence the working frequency of our core
design is set to 150MHz. Off-chip memory runs at 300HMz.

Benchmark Description. We evaluate our framework using two
core image processing algorithms for 3D MRI, denoise and seg-

mentation. These algorithms are taken from the CPU implemen-
tation of the CDSC medical imaging pipeline [1, 16, 17]. We also
evaluate 2 benchmarks from the PolyBench/C test suite, representa-
tive of compute-bound and memory-bound numerical kernels. They
are described in Table 1. We report the total number of operations as
x× y where x indicates the number of operations per loop iteration,
and y the number of iterations. All benchmarks use single-precision
floating point arithmetic in the input C code. is well-known that

Table 1: Description of the benchmarks used
Benchmark Description #fp ops

denoise 3D Jacobi+Seidel-like 7-point stencils 61×2563×15

segmentation 3D Jacobi-like 7-point stencils 67×2563×150

DGEMM matrix-multiplication 3×20483 +20482

GEMVER sequence of mv 11×20482

5.2.3 Details of DSE Results

The time taken by our framework is decomposed as follow. For
each point in the design space (e.g., a different tile size), the end-
to-end transformation from the original C program to the AutoESL-
friendly input C file (this includes program transformations for lo-
cality, on-chip buffer management and optimizations, and HLS-specific
optimizations) takes about one minute, for the most complex pro-
gram. AutoESL transforms the input C program and generates RTL
as well as complete latency/usage reports in at most two minutes in

92Available at http://cadlab.cs.ucla.edu/PolyOptHLS.

our experiments. So, testing 100 points takes at most five hours, and
took usually around two hours in our experiments.

We have set a maximal buffer size limit to 1440 BRAMs, as it is
the maximum for the Virtex-6 FPGA on the Convey HC-1. To cap-
ture multiple scenarios of bandwidth usage, we evaluated about 100
different rectangular tile sizes, using different power-of-two values
in each of the three tile dimensions. Each tile size will have a differ-
ent buffer requirement, and a different communication volume.

Figure 5 plots the results of the fast DSE framework that we im-
plemented on three representative benchmarks, for a subset of the
entire computation. In this figure, we compare side-by-side the off-
chip communication volume on the y axis, in number of 32-bit el-
ements communicated, with the total off-chip communication time
on the x axis, as reported by AutoESL. DSE results are reported
using a single PE per FPGA.

We observe significant variations in the communication volume
that can be transferred in the same amount of time. For instance,
the time to transfer the same amount of data can vary by more than
3× for Segmentation. This is because the quality of the RTL gen-
erated by AutoESL depends on the source code generated by our
framework. Multiple factors influence the performance of the gen-
erated code. First, loop bounds used to compute the data space to
communicate may be significantly more complex between two tile
sizes. This is an artifact of polyhedral code generation, where gener-
ated loop bounds may contain tens or more sequences of min, max,
ceil and f loor functions. For some tile sizes not evenly dividing
the data space to communicate, more complex code is generated
and the QoR is lowered. Second, the benefit of loop pipelining de-
pends on the loop trip count of the innermost loops. For loops with
a too-small trip count (lower than the pipeline depth), the benefit of
pipelining will be reduced. As a consequence, two tile sizes hav-
ing a similar communication volume (e.g., 4×8×1 and 1×4×8)
will see a different QoR. While analytical modeling of those spe-
cific factors may be achievable, it is important to note that AutoESL
is a production compiler. As such, it is fragile and sensitive to the
input program shape, as different source codes triggers different in-
ternal optimizations, therefore leading to different QoR. Such effect
is a well-known artifact of compilers, and has been widely observed
and discussed for production compilers [35].

All those factors confirm our claim that using fast DSE addresses
important considerations for the final performance. It is very un-
likely that all artifacts related to QoR obtained by the HLS tools can
be modeled analytically, as it would be equivalent to building an an-
alytical model of an optimizing compiler. In addition, because of the
very fast speed of AutoESL, this modeling effort is non-necessary.
So, RTL generation is used to capture those effects such as as how
good a compiler (our framework or AutoESL) will be at optimizing
different program variants.

Figure 6 shows, for the same benchmark and design space, the
Pareto-optimal points for total time and buffer size requirement.

We observe a trade-off between the buffer size requirement and
the total time, illustrative of tile size exploration results. Indeed, the
majority of data reuse is achieved with tile sizes that fit in a few tens
of kB; for instance for segmentation a tile size of 4× 8× 256 uses
only 73 BRAMs, and has achieved a communication volume reduc-
tion of 20× with respect to a non-tiled variant. Using a larger tile
size requires a significantly larger buffer size (typically holding a
complete 2D slice of the image), but achieves only a small commu-
nication improvement (21× vs. 20× above). In addition, as pointed
out above, one key challenge in improving the total execution time
is taking into account all compiler optimization effects. With our
DSE approach, we can select the transformed variant that achieves
the best estimated total time, this takes into account all high-level
synthesis/RTL generation artifacts.

36

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07 4e+07 4.5e+07

T
o
ta

l
c
o
m

m
u
n
ic

a
ti
o
n
 v

o
lu

m
e
 (

in
 s

c
a
la

rs
)

Total communication time (in cycles)

Denoise: Communication Analysis

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

T
o
ta

l
c
o
m

m
u
n
ic

a
ti
o
n
 v

o
lu

m
e
 (

in
 s

c
a
la

rs
)

Total communication time (in cycles)

Segmentation: Communication Analysis

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 0 2e+07 4e+07 6e+07 8e+07 1e+08 1.2e+08 1.4e+08 1.6e+08

T
o
ta

l
c
o
m

m
u
n
ic

a
ti
o
n
 v

o
lu

m
e
 (

in
 s

c
a
la

rs
)

Total communication time (in cycles)

DGEMM: Communication Analysis

Figure 5: Communication time vs. Communication volume

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1e+08 2e+08 3e+08 4e+08 5e+08 6e+08 7e+08

T
o

ta
l
B

R
A

M
s
 (

in
 1

6
k
B

 b
lo

c
k
s
)

Total execution time (in cycles)

Denoise: Pareto-optimal

 0

 100

 200

 300

 400

 500

 600

 1e+09 1.5e+09 2e+09 2.5e+09 3e+09 3.5e+09 4e+09 4.5e+09

T
o

ta
l
B

R
A

M
s
 (

in
 1

6
k
B

 b
lo

c
k
s
)

Total execution time (in cycles)

Segmentation: Pareto-optimal

 0

 20

 40

 60

 80

 100

 120

 140

 1.8e+07 1.9e+07 2e+07 2.1e+07 2.2e+07 2.3e+07 2.4e+07 2.5e+07 2.6e+07 2.7e+07 2.8e+07

T
o
ta

l
B

R
A

M
s
 (

in
 1

6
k
B

 b
lo

c
k
s
)

Total execution time (in cycles)

DGEMM: Pareto-optimal

Figure 6: Total time vs. On-Chip Buffer Size Requirement, Pareto-optimal points

5.2.4 Complete Results

Table 2 summarizes the best version found by our framework,
for each tested benchmark. We report #PEs the number of replica-
tions of the full computation we have been able to place on a single
Virtex-6 FPGA as in the Convey HC-1, showing the level of coarse-
grain parallelization we have achieved. BRAM and LUT are totals
for the set of PEs placed on the chip.

Table 2: Characteristics of Best Found Versions
Benchmark tile size #PEs #BRAM #LUT

denoise 4×8×128 2 132 178544

segmentation 4×8×256 8 584 177288

DGEMM 8×256×32 16 320 112672

GEMVER 128×128 10 500 140710

Table 3 reports the performance, in GigaFlop per second, of nu-
merous different implementations of the same benchmark. out-of-

the-box reports the performance of a basic manual off-chip-only im-
plementation of the benchmark, without our framework. PolyOpt/HLS-

E reports the performance achieved with our automated framework.
Those are AutoESL results obtained with our fast DSE framework.
Hand-tuned reports the performance of a manually hand-tuned ver-
sion serving as our performance reference, from Cong et al. [17]. It
has been designed through time-consuming source code level man-
ual refinements, specifically for the HC-1ex machine. It demon-
strated that a 4-FPGA manual design for denoise and segmentation

systematically outperforms a CPU-based implementation, both in
terms of performance improvement (from 2× to 20×) and energy-
delay product (up to 2000×), therefore showing the great poten-
tial of implementing such 3D image processing algorithms on FP-
GAs [17].

We observe that for denoise (only 2 PEs were generated by Poly-
Opt/HLS) the final performance, despite being significantly better
than an off-chip-based solution, remains far from the manual design
(which uses 4 PEs). On one hand, the code we generate, and espe-
cially the loop structures, are more complex for denoise than, e.g.,
segmentation. This leads to under-performing execution for our au-

tomatically generated code. On the other hand, the reference man-
ual implementation uses numerous techniques not implemented in
our automatic framework, such as in-register data reuse, fine-grain
communication pipelining, and algorithmic modifications leading to
near-optimal performance for this version.

For segmentation, we outperform the manual design, despite the
clear remaining room for improvement our framework still has, as
shown by the denoise number. We mention that semi-automated
manual design can be performed on top of our framework, to address
optimizations we do not support, such as array partitioning.

Table 3: Side-by-side comparison
Benchmark out-of-the-box PolyOpt/HLS-E hand-tuned [17]

denoise 0.02 GF/s 4.58 GF/s 52.0 GF/s
segmentation 0.05 GF/s 24.91 GF/s 23.39 GF/s

dgemm 0.04 GF/s 22.72 GF/s N/A
gemver 0.10 GF/s 1.07 GF/s N/A

Finally Table 4 compares the latency as reported by AutoESL us-
ing our memory latency framework for fast DSE, against the wall-
clock time observed on the machine after full synthesis of the gen-
erated RTL. We report the performance of a single PE call executing
a subset (slice) of the full computation.

Table 4: AutoESL vs. full synthesis comparison (in cycles)
Benchmark AutoESL only full synthesis

denoise-1PE (1/32 slice) 23732704 25254164 (+6%)
segmentation-1PE (1/32 slice) 131984559 148878928 (+12%)

dgemm-1PE (1/64 slice) 5022287 5055335 (+1%)

6. CONCLUSION
High Level Synthesis (HLS) tools for synthesizing designs spec-

ified in a behavioral programming language like C/C++ can dra-
matically reduce the design time especially for embedded systems.
HLS systems have now reached a level of advancement to be able
to generate RTL that comes quite close to hand generated designs.

37

However, the current state-of-the art is still very far from being able
to take a simple high-level description of a system in C/C++ and
derive an efficient FPGA implementation. Currently, an expert de-
signer must perform a number of manual source-level transforma-
tions of the input C/C++ code to create an “HLS-friendly" C/C++
program before an effective hardware design can be synthesized by
the HLS tool.

We have provided in this paper a complete and fully implemented
compiler support to alleviate the burden of manually transforming
an input sequential C program into a version that can be effectively
mapped to FPGA using HLS tools. Our approach leverages the
polyhedral compilation framework to automatically transform the
input program for data reuse improvement, as well as for outer and
inner parallelism extraction. We have designed and implemented a
novel and powerful end-to-end solution for on-chip buffer optimiza-
tion, that automatically implements the available data reuse in a loop
nest. This approach is able to meet any hardware-based resource
constraint on the maximal buffer size. In addition we presented
a complete fast design space exploration technique, leveraging the
specifics of polyhedral program. As a result, we have performed ex-
tensive design space exploration using the Xilinx ISE tool-chain on
medical imaging algorithms. Experiments showed very significant
performance improvements over purely out-of-the-box off-chip au-
tomatic solutions, and our automated framework even beats in one
case a hand-tuned reference implementation of a segmentation al-
gorithm.

Acknowledgment. This work was supported by the Center for
Domain-Specific Computing (CDSC) funded by NSF “Expeditions
in Computing” award 0926127, and the Gigascale Systems Research
Center (GSRC).

7. REFERENCES
[1] Center for domain-specific computing. http://cdsc.ucla.edu.

[2] Convey. http://www.conveycomputer.com.

[3] http://www.xilinx.com/products/design-tools/ise-design-suite/index.htm.

[4] Pocc 1.1. http://pocc.sourceforge.net.

[5] An independent evaluation of the autoesl autopilot high-level synthesis tool.
Technical report, Berkeley Design Technology, Inc., 2010.

[6] N. Ahmed, N. Mateev, and K. Pingali. Tiling imperfectly-nested loop nests. In
ACM/IEEE Conf. on Supercomputing (SC’00), Dallas, TX, USA, Nov. 2000.

[7] C. Alias, A. Darte, and A. Plesco. Optimizing remote accesses for offloaded
kernels: application to high-level synthesis for fpga. SIGPLAN Not.,
47(8):285–286, Feb. 2012.

[8] J. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures.
Morgan Kaufmann Publishers, 2002.

[9] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam,
A. Rountev, and P. Sadayappan. Automatic data movement and computation
mapping for multi-level parallel architectures with explicitly managed memories.
In ACM Symposium on Principles and practice of parallel programming, pages
1–10. ACM, 2008.

[10] C. Bastoul. Code generation in the polyhedral model is easier than you think. In
IEEE Intl. Conf. on Parallel Architectures and Compilation Techniques

(PACT’04), pages 7–16, Sept. 2004.

[11] S. Bayliss and G. A. Constantinides. Optimizing sdram bandwidth for custom
fpga loop accelerators. In Proceedings of the ACM/SIGDA international

symposium on Field Programmable Gate Arrays, FPGA ’12, pages 195–204,
New York, NY, USA, 2012. ACM.

[12] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A practical
automatic polyhedral program optimization system. In ACM SIGPLAN

Conference on Programming Language Design and Implementation, June 2008.

[13] E. Brockmeyer, M. Miranda, and F. Catthoor. Layer assignment techniques for
low energy in multi-layered memory organisations. In Design, Automation and

Test in Europe Conference and Exhibition, 2003, pages 1070–1075, 2003. DATE.

[14] F. Catthoor, K. Danckaert, K. Kulkarni, E. Brockmeyer, P. Kjeldsberg, T. v.
Achteren, and T. Omnes. Data access and storage management for embedded

programmable processors. Kluwer Academic Publishers, Norwell, MA, USA,
2002.

[15] F. Catthoor, E. d. Greef, and S. Suytack. Custom Memory Management

Methodology: Exploration of Memory Organisation for Embedded Multimedia

System Design. Kluwer Academic Publishers, Norwell, MA, USA, 1998.
[16] J. Cong, K. Guruaj, M. Huang, S. Li, B. Xiao, and Y. Zou. Domain-specific

processor with 3d integration for medical image processing. In IEEE Intl. Conf.

on Application-Specific Systems, Architectures and Processors, pages 247 –250,
sept. 2011.

[17] J. Cong, M. Huang, and Y. Zou. Accelerating fluid registration algorithm on
multi-fpga platforms. In Proc. of Intl. Conf. on Field Programmable Logic and

Applications (FPL’11). IEEE, 2011.

[18] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang.
High-level synthesis for fpgas: From prototyping to deployment.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions

on, 30(4):473 –491, april 2011.

[19] J. Cong, P. Zhang, and Y. Zou. Optimizing memory hierarchy allocation with
loop transformations for high-level synthesis. In Design Automation Conference

(DAC’12), June 2012.

[20] A. Darte, R. Schreiber, and G. Villard. Lattice-based memory allocation. IEEE

Trans. Comput., 54(10):1242–1257, 2005.

[21] P. Diniz, M. Hall, J. Park, B. So, and H. Ziegler. Bridging the gap between
compilation and synthesis in the defacto system. In LCPC’03, pages 52–70.
2003.

[22] P. Feautrier. Some efficient solutions to the affine scheduling problem. Part II.
Multidimensional time. Int. J. Parallel Program., 21(5):389–420, 1992.

[23] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler, and
O. Temam. Semi-automatic composition of loop transformations for deep
parallelism and memory hierarchies. Intl. J. of Parallel Programming, 34(3),
2006.

[24] A. Grosslinger. Precise Management of Scratchpad Memories for Localising
Array Accesses in Scientific Codes. In Compiler Construction, pages 236–250,
2009.

[25] A.-C. Guillou, F. Quilleré, P. Quinton, S. Rajopadhye, and T. Risset. Hardware
design methodology with the Alpha language. In FDL’01, Lyon, France, Sept.
2001.

[26] Q. Hu, P. G. Kjeldsberg, A. Vandecappelle, M. Palkovic, and F. Catthoor.
Incremental hierarchical memory size estimation for steering of loop
transformations. ACM Trans. Des. Autom. Electron. Syst., 12, September 2007.

[27] F. Irigoin and R. Triolet. Supernode partitioning. In ACM SIGPLAN Principles of

Programming Languages, pages 319–329, 1988.

[28] I. Issenin, E. Brockmeyer, M. Miranda, and N. Dutt. Drdu: A data reuse analysis
technique for efficient scratch-pad memory management. ACM Trans. Des.

Autom. Electron. Syst., 12, April 2007.

[29] M. Kandemir and A. Choudhary. Compiler-directed scratch pad memory
hierarchy design and management. In Design Automation Conference, 2002.

Proceedings. 39th, pages 628–633, 2002.

[30] I. Kodukula, N. Ahmed, and K. Pingali. Data-centric multi-level blocking. In
ACM SIGPLAN’97 Conf. on Programming Language Design and

Implementation, pages 346–357, Las Vegas, June 1997.

[31] Q. Liu, G. A. Constantinides, K. Masselos, and P. Cheung. Combining data reuse
with data-level parallelization for fpga-targeted hardware compilation: A
geometric programming framework. Trans. Comp.-Aided Design of Integr.

Circuits and Systems, 28(3):305–315, 2009.

[32] M. Palkovic, F. Catthoor, and H. Corporaal. Trade-offs in loop transformations.
ACM Trans. Des. Autom. Electron. Syst., 14:22:1–22:30, April 2009.

[33] P. R. Panda, N. D. Dutt, and A. Nicolau. Local memory exploration and
optimization in embedded systems. IEEE Trans. on CAD of Integrated Circuits

and Systems, 18:3–13, January 1999.

[34] PolyOpt: A complete source-to-source Polyhedral Compiler,
http://www.cse.ohio-state.edu/∼pouchet/polyopt.

[35] L.-N. Pouchet, C. Bastoul, A. Cohen, and N. Vasilache. Iterative optimization in
the polyhedral model: Part I, one-dimensional time. In IEEE/ACM Intl. Symp. on

Code Generation and Optimization (CGO’07), pages 144–156, 2007.

[36] B. So, M. W. Hall, and P. C. Diniz. A compiler approach to fast hardware design
space exploration in fpga-based systems. In Programming Language Design and

Implementation, 2002.

[37] K. Trifunovic, D. Nuzman, A. Cohen, A. Zaks, and I. Rosen. Polyhedral-model
guided loop-nest auto-vectorization. In IEEE Intl. Conf. on Parallel

Architectures and Compilation Techniques, pages 327–337, 2009.

[38] S. Verdoolaege. isl: An integer set library for the polyhedral model. In
Mathematical Software - ICMS 2010, pages 299–302, 2010.

[39] M. Wolf and M. Lam. A data locality optimizing algorithm. In ACM

SIGPLAN’91 Conf. on Programming Language Design and Implementation,
pages 30–44, New York, June 1991.

[40] M. Wolfe. Iteration space tiling for memory hierarchies. In 3rd SIAM Conf. on

Parallel Processing for Scientific Computing, pages 357–361, Dec. 1987.

[41] W. Zuo, Y. Liang, P. Li, K. Rupnow, D. Chen, and J. Cong. Improving High
Level Synthesis Optimization Opportunity Through Polyhedral Transformations.
In Proc. of the ACM/SIGDA Intl. Symp. on Field Programmable Gate Arrays

(FPGA’13), 2013.

38

