
LANMC: LSTM-Assisted Non-Rigid Motion Correction on FPGA
for Calcium Image Stabilization

Zhe Chen
University of California, Los Angeles

Los Angeles, California
zhechen@ucla.edu

Hugh T. Blair
University of California, Los Angeles

Los Angeles, California
tadblair@ucla.edu

Jason Cong
University of California, Los Angeles

Los Angeles, California
cong@cs.ucla.edu

ABSTRACT
Calcium imaging is an emerging technique for visualizing and
recording neural population activity at large scale in vivo. Non-
rigid motion correction is a critical step in the calcium image anal-
ysis pipeline due to non-uniform deformations of the brain tissue
during the data collection. Existing non-rigid motion correction
algorithms are costly in computation time and energy, and it is hard
to implement such algorithm in real time on an embedded device.
In this paper, we propose LANMC, an LSTM-assisted non-rigid
motion correction method for real-time calcium image stabilization.
This method reduces the computational cost by using the LSTM
inference to predict the non-rigid motion. Based on this method, we
demonstrate a non-rigid motion correction implementation for real-
time calcium image stabilization on FPGA. Experimental results
show that the non-rigid motion correction can be accomplished
within 80 µs on the Ultra96 under 300 MHz frequency, and the
latency outperforms that on a 12-thread CPU by 82x.

KEYWORDS
Calcium image, long short-termmemory (LSTM), motion correction
ACM Reference Format:
Zhe Chen, Hugh T. Blair, and Jason Cong. 2019. LANMC: LSTM-Assisted
Non-Rigid Motion Correction on FPGA for Calcium Image Stabilization. In
The 2019 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA ’19), February 24–26, 2019, Seaside, CA, USA. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3289602.3293919

1 INTRODUCTION
Calcium imaging is a neural recording technique that can monitor
neural population activity in vivo [15]. Recent progress in miniatur-
ized fluorescent calcium imaging has enabled this technique to be
realized in a light-weight head mounted miniscope sensor device
for freely moving mice and rats [1, 5]. Such device can generate ter-
abytes of data over days of recording, creating a huge computational
burden for calcium imaging analysis [6].

Motion correction is a critical step in the calcium image analysis.
It removes motion artifacts caused by inevitable displacement of
the brain inside the skull during the image capturing. Due to the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FPGA ’19, February 24–26, 2019, Seaside, CA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6137-8/19/02. . . $15.00
https://doi.org/10.1145/3289602.3293919

Image Sensor

Transmitter

FPGA

Real-Time Motion
Correction

30 fps Calcium Image Video Data Acquisition

Non-Rigid Motions

3-g Head
Mounted
Minicope

Rec

Figure 1: Real-time non-rigid motion correction for calcium
image sensed by head-mounted miniscope [1].
non-uniform deformations of the brain tissue, the motion artifacts
can be non-rigid, which increases the difficulty for the motion
correction. An effective non-rigid motion correction algorithm has
been proposed in [13], but it is costly in computation and not
efficient for the real-time implementation. Real-time rigid motion
correction for calcium imaging has been realized on CPU [6], but it
does not account for the brain tissue deformation.

A real-time non-rigid motion correction for calcium image stabi-
lization is in demand. Fig. 1 illustrates a flow-diagram for a closed-
loop neurofeedback application in which the real-time non-rigid
motion correction plays an important role in supporting the op-
togenetic feedback stimulation. Compared with state-of-the-art
embedded CPUs and GPUs, FPGA is more appropriate for this
application, because its customizable processing architecture can
provide higher energy efficiency, shorter processing latency, and
more flexible interface in processing data from the sensor. As the
temporal and spatial resolution of theminiscope image sensor keeps
increasing, it remains challenging to implement highly efficient
non-rigid motion correction on FPGA due to the algorithm com-
plexity, especially considering the limited hardware resource and
energy budget on a head-mounted device.

In this paper, we propose a long short-term memory (LSTM)
assisted non-rigid motion correction (LANMC) algorithm and im-
plement it on FPGA for real-time calcium image stabilization. First,
we introduce the method in saving computation and evaluate its
performance by making comparison with existing non-rigid mo-
tion correction algorithm. Then we introduce our FPGA design
which is orthogonal to the proposed method for a highly efficient

https://doi.org/10.1145/3289602.3293919
https://doi.org/10.1145/3289602.3293919

implementation. Finally, we report experiment results and compare
processing speed and energy efficiency against the CPU which is
commonly used in existing miniscope data acquisition platform.

The contributions of this paper are summarized as follows:
• To the best of our knowledge, we are the first to propose
using LSTM for the non-rigid motion correction and real-
ize real-time non-rigid motion correction for calcium image
stabilization in real time. Our method can reduce the com-
putation cost by 95% while maintaining acceptable accuracy
compared to a state-of-the-art offline algorithm.

• We propose a folding architecture for real-time contrast fil-
tering by leveraging the central symmetry of a 17×17 filter
kernel. The proposed architecture saves over 70% of oper-
ations, and achieves 25 cycle processing latency and 169
op/cycle computation density during the runtime.

• We implement non-rigid motion correction for calcium im-
age stabilization on the Ultra96 with 4.5 W power consump-
tion. Under 300 MHz, the processing latency achieves 80
µs, which outperforms the evaluation result on multi-core
Xeon E5-2860 CPU by 82x. Combined with using the LSTM
inference, our implementation has close to 4 orders of en-
ergy efficiency gain compared to the conventional offline
non-rigid motion correction on CPU.

2 BACKGROUND
2.1 Conventional Non-Rigid Motion Correction
Motion correction is a critical processing step in a variety of cal-
cium image analysis algorithms [6, 12, 13]. Recent work shows that
piecewise rigid motion correction can effectively reduce non-rigid
motion artifacts and outperform other methods for calcium im-
age stabilization [13]. Fig. 2 illustrates the processing flow of this
method1. For calcium image analyzed here, the first step is to en-
hance the image with a contrast filter that removes the bulk of the
background [13]. The kernel size of the filter is determined by the
diameter of the cell bodies in the source image, and 17×17 was the
minimum kernel size for generating sufficiently accurate motion
correction results. The second step is to divide the field of view of the
image into overlapping patches f (i, j) ∈ RNP×NP , i ∈ [1, ⌈W /NP ⌉],
j ∈ [1, ⌈L/NP ⌉], to perform the piecewise rigid motion correc-
tion. For each patch, the algorithm calculates its cross correlation
CC (i, j) ∈ RNP×NP against a template д (i, j) ∈ RNP×NP from the
frequency domain through 2D FFT/IFFT operations. Finally, the
motion vector for each image patch is extracted by finding the
position of the maximum amplitude of the cross correlation, and
the subpixel resolution is achieved through the interpolation [6].

2.2 Algorithm Complexity
For the algorithm described in Section 2.1, suppose the kernel size
of the filter is NK × NK , and the image patch size is NP × NP . The
operation count per image frame can be estimated by

CNoR =
(
2N 2

K − 1
)
WL +

(
8N 2

P log2NP + 2N 2
P

) ⌈W
NP

⌉ ⌈
L

NP

⌉
(1)

1Histogram equalization is adopted on the filtered image for better visibility.

Figure 2: Conventional non-rigid motion detection flow.
in whichW and L represent the width and length of the calcium
image. For simplicity, we assume NP is a power of two, and ignore
the cost of the interpolation. The first addend is derived from the
contrast filter with complexity O(N 2

K) per pixel, while the second
addend is contributed by the motion vector extraction with com-
plexity O(N 2

P loд2(NP)) per patch. For a typical parameter set with
NK=17 and NP=128, the contrast filter dominates the operation
count. The goal of this paper is to reduce the complexity described
in Eq. 1 and realize an efficient non-rigid motion correction with
short latency for real-time calcium image analysis.

2.3 LSTM Inference
LSTM is a type of recurrent neural networks that has been success-
fully used in a variety of time-series prediction tasks [9]. For an
LSTM model with one layer and NH hidden nodes, the inference
output for the current time step is based on the updates of four
independent types of gates: input gate (I), forget gate (F), cell gate
(G) and output gate (O) by taking advantage of the recurrent con-
nections from the hidden nodes. Recent work shows that a compact
LSTM model with a typical setting of NH =5 can achieve sufficient
accuracy in approximating IIR filter functions [3]. The inference
complexity of NH -node LSTM derived by

CLSTM (NH) = 16N 2
H + 6NH (2)

shows its good potential for high efficiency on-line inferencing.

3 PROPOSED METHOD
3.1 LSTM-based Non-Rigid Motion Correction
We propose a non-rigid motion correction algorithm for miniscope
captured calcium image based on LSTM inference to reduce the
computation cost. As Fig. 3(a) shows, instead of performing heavy
motion calculations for each divided image patch f (i, j), we evaluate
the motion only at a central NC × NC pixel region, and then we
use the calculation result to predict non-rigid motions of all image
patches based on LSTM inference.

Fig. 3(b) shows the motion extraction from the central region
and all image patches throughout the calcium image video session.
The displacement of each patch f (i, j) is represented by a motion
vector containing two values

{
xi, j ,yi, j

}
. These values represent the

rigid motion against the template along the horizontal and vertical
axes with sub-pixel precision. For motion extraction at the central

... ...

...
...

... ...

...

...

LSTM-1

LSTM-2

... ...

Shift(x)

Shift(y)

Training

Inference

Rigid MC

Non-Rigid MC

(a) (b)

(c)

f(i0, j0)

Figure 3: (a) Proposed LSTM-assisted non-rigid motion cor-
rection. (b) Motion vector extraction for the central region
and all image patches. (c) LSTM inference on one patch.

region, a light-weight rigid motion correction described in Fig. 2
is performed to reduce the computation cost. For motion extrac-
tion at all image patches, a non-rigid motion correction algorithm
NoRMCorre [13] is used to achieve high accuracy.

Fig. 3(c) illustrates the LSTM-assisted method in detail. Since all
image patches are independent, we only show one projection from
the central region to an image patch f (i0, j0) for simplicity. The op-
eration of the LSTM can be divided into two stages: offline training
and online inference. During the training, the motion vector time
series {xC ,yC } extracted at the central region is used as input, and
the motion vector time series extracted at the patch f (i0, j0) are
used as the target. A pair of compact LSTM networks are trained
to adapt the motion vector components of the central region to
those of the patch f (i0, j0) along the horizontal and vertical axes,
respectively. After the LSTM networks are well trained, they are
deployed to inference the offline motion correction at much shorter
latency and much lower computational cost.

For the rigid motion correction at the central region, the opera-
tion count per frame can be derived by:

CRiдid =
(
2N 2

K − 1
)
N 2
C +

(
8N 2

P log2NP + 2N 2
P

)
(3)

and the computation cost saving can be estimated by:

Gef f = CNoR/

(
CRiдid +CLSTM (NH)

⌈
W

NP

⌉ ⌈
L

NP

⌉)
(4)

Considering the miniscope [1] resolution 752×480 and parame-
ters NC = 128 and NH = 5, theGef f results in 22.2x by keeping the
default settings in Section 2.2. It indicates that 95% of operations
can be saved by taking advantage of the LSTM inference for the
non-rigid motion correction.

3.2 Algorithm Evaluation
We carried out an evaluation based on 26 sessions of calcium image
videos, lasting for 50 seconds each. We used 25 sessions as the
training set, and the remaining session as the test set. During the
offline training, we derived the input based on the rigid motion
correction shown in Fig. 2, and extracted non-rigid motion vectors

sh
ift
/p
ix

-8

-4

0

4

8

0 200 400 600 800 1,000

f(2,3) f(4,4) f(4,5)

-8

-4

0

4

8

200 400 600 800 1,000

f(2,3) f(4,4) f(4,5)

sh
ift
/p
ix

-8

-4
0

4

8

frame
200 400 600 800 1,000

f(2,1) f(3,4) f(3,6)

-8

-4

0

4

8

frame
200 400 600 800 1,000

f(2,1) f(3,4) f(3,6)

(a) (b)

(c) (d)

Figure 4: Extracted motion vectors in horizontal/vertical di-
rection from three different image patches by using the
NoRMCorre method (a)/(c) and the LSTM inference (b)/(d).

using the NoRMCorre [13] as the training targets. For each image
patch f (i, j), we trained a pair of compact 5-node LSTM networks
using Caffe [10] to predict motion vectors in horizontal and vertical
directions. We adopted the step learning rule, and set both the base
learning rate and the gamma to be 0.1. During the inference, we
fed the rigid motion vector of the central region extracted from the
test video to the well-trained LSTMs, and the outputs were used
as an approximation of non-rigid motion vectors for each image
patch f (i, j). Fig. 4 shows a comparison on non-rigid motion correc-
tion carried out by conventional method and the LSTM inference.
Fig. 4(a) and (c) show vectors extracted by conventional methods
from three selected image patches in horizontal and vertical direc-
tions, respectively, whereas Fig. 4(b) and (d) shows motion vectors
inferenced by the LSTMs correspondingly.

We used the residual of optical flow (ROF) measurement [13] to
evaluate the accuracy of the proposedmethod. Fig. 5 (a) and (b) show
the evaluation results on No.451-453 and No.554-556 frames with
obvious non-rigid motion artifacts. We first extracted the ROF of
the registered frames based on optical flow [4], and then calculated
the averaged ROF map for the vector plot and evaluated the ROF
per pixel within the map. As the results show, the non-rigid motion
correction algorithm NoRMCorre can get rid of most of the non-
uniform motion artifacts, whereas the LANMC corrects significant
amount of non-rigid motions by approximating the NoRMCorre.
By using the LSTM inference, the ROF can be reduced by 69.2% and
50% for the selected frame periods, respectively.

Table 1 summarizes the evaluated ROF for non-rigid, rigid and
LSTM-assisted methods on the test session. Evaluation results show
that the LANMC on average reduces 48% ROF compared with the
rigid method, and the accuracy is comparable with the NoRMCorre.
We also compared the horizontal component mean absolute differ-
ence (MAD) diff (x), vertical component MAD diff (y) and amplitude
MAD diff (a) among these methods. Comparison results in Table
1 show that the LSTM-assisted method achieves higher accuracy
than the rigid method in approximating the NoRMCorre method.

4 FPGA DESIGN
The FPGA design of the LANMC consists of a contrast filter accel-
erator, an FFT-based cross correlation module for motion vector
extraction at the central region, and an LSTM inference kernel for
non-rigid motion prediction at all distributed image patches.

Frame 451 - 453
Rigid ROF = 0.52 px NonRigid ROF = 0.15 px LSTM ROF = 0.16 px

Frame 554 - 556
Rigid ROF = 0.66 px NonRigid ROF = 0.19 px LSTM ROF = 0.33 px

(a)

(b)

Figure 5: Mean ROF of the motion corrected (a) No.451-453
frames and (b) No.554-556 frames across time by the rigid,
non-rigid and LSTM-assisted methods.

Table 1: Performance of the LSTM method compared with
conventional motion correction algorithms

ROF(pixel) diff (x) diff (y) diff (a)
NoRMCorre [13] 0.19±0.11 0 0 0
Rigid Method 0.60±0.45 0.879 0.658 1.248
LANMC 0.31±0.22 0.621 0.362 0.804

4.1 Contrast Filter Design
A key observation at the contrast filter described in Section 2.1 is
that the template of the filter is symmetric about the horizontal,
vertical and diagonal axes. This provides the opportunity to reduce
the computation efforts. Instead of performing multiplication for
each coefficient in the filter template, we can first add up the input
values corresponding to the coefficients in symmetry, and then
multiply the sum with the coefficient to get the equivalent result.
By leveraging this reordering, logic and memory resource costs in
realizing the contrast filter can be reduced. Fig. 6 shows the pro-
posed folding architecture for the contrast filter. The architecture
features three stages of folding data flow. On the first stage, instead
of feeding the NK 8-bit pixels from the 1D column buffer directly
to a NK × NK processing element (PE) array [14], we inserted an
adder stage between the column buffer and a shift register array,
as Fig. 6(a) shows. The adder stage reduced the amount of data and
the corresponding array size by half with negligible latency over-
head. In a similar manner, Fig. 6(b) shows the second-stage folding
architecture leveraging the vertical symmetry. For each row of PE,
we employed a row of 9-bit adders to fold the horizontal partial
sums. Finally, in the quarter-size array, we used a last stage of 10-bit
adders to sum the values having a diagonal line of symmetry as
shown in Fig. 6(c). With three stages of folding, the requirement on
the multiplication count is reduced to one eighth, and we in further
skipped multiplication with zeros to save computation. Table 2
shows a comparison on hardware cost between the implementa-
tions with and without folding. By taking advantage of the folding,
the proposed architecture saves >80% logic and registers and >60%
DSPs. Evaluation on multicore CPU with OpenMP shows that the

+

+

+

+

+

+

+
+

...

...

...

...

...

...

...

...

...

(a) (b)

+

+

+

+

+

+

+
(c)

8
-b
it

9-bit

10-bit

1
1
-bit

NK/2

N
K /2

..
.

..
.

..
.

..
.

..
.

..
.

...

...

...

...

... ...

......

...

...

...

...

..
.

..
.

NK

N
K

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

NK

N
K /2

Figure 6: Proposed (a) 1st stage (b) 2nd stage and (c) 3rd
stage folding architecture for the contrast filter featuring
centrally symmetric coefficients.

Table 2: FPGA resource saving by the folding architecture

W/ Folding W/O Folding Resource Saving
LUT 1211 6373 81.0%
FF 1972 11809 83.3%
DSP 22 56 60.7%
SRL 15 489 96.9%

Table 3: Comparison on runtime of the full frame filtering
with multi-core CPU

This work 4 thr 8 thr 12 thr 16 thr
Freq(MHz) 100 300 1200 - 1500
Runtime(ms) 3.73 1.25 135 90 53 62

folding speeds up the contrast filtering by 1.8x. Table 3 shows the
runtime comparison on contrast filtering with folding between the
FPGA and the Xeon E5 2860 CPU. The FPGA design achieves 25
clock cycle latency, and the runtime under 300 MHz outperforms
the evaluation on the CPU by over 40x speedup.

4.2 Reused Parallel FFT/IFFT
As Section 2.1 introduces, an efficient way to calculate the cross
correlation is to perform dot product at the frequency domain. We
implemented the 2D NP × NP FFT/IFFT transforms by carrying
out consecutive NP horizontal and NP vertical NP -point FFT/IFFTs.
Computation unit and BRAM buffer resource for each round of NP -
point transforms are reused. In order to achieve short processing
latency, we unrolled the FFT/IFFT transformer by 4. In addition, we
partitioned the BRAM into 4 blocks to cope with the computation
throughput. Fig. 7 shows the proposed timing for the BRAM access
and the transfer of the data to the FFT/IFFT units. We stored both
the input and the result data in a row-major order. For horizontal

BRAM Partition 128-Point

Blk1

Blk2

Blk3

Blk4

Blk1

Blk2

Blk3

Blk4

Row(1)
Row(2)

Row(3)

Row(33)

Row(97)

Row(34)
Row(35)

Row(65)
Row(66)

Row(67)

Row(98)
Row(99)

...

...

...

...

...

...

...

...

Col(1)
Col(2)

Col(3)

Col(33)
Col(34)

Col(35)

Col(65)
Col(66)

Col(67)

Col(97)
Col(98)

Col(99)

...

...

...

...

...

...

...

...

Transposed Readout
(a)

(b)

1D FFT/IFFT

1D FFT/IFFT

1D FFT/IFFT

1D FFT/IFFT

1D FFT/IFFT

1D FFT/IFFT

1D FFT/IFFT

1D FFT/IFFT

Figure 7: (a) BRAMpartition and FFT/IFFTunrolling for row-
wise parallel operation, and (b) transposed BRAM readout
timing for column-wise parallel FFT/IFFT operations.

Table 4: Comparison on latency and FPGA resource usage

Freq Latency LUT FF DSP

This work 300MHz 45.8 µs 8913 12624 60
100MHz 137.4 µs 8886 12539 60

Ref. [2] 100MHz 328.2 µs 14036 14622 108

FFT/IFFT transforms, the data can be fetched independently from
the BRAMs, and the FFT/IFFT units operate in parallel, as Fig. 7(a)
shows. For vertical FFT/IFFT transforms, the data access from the
BRAM is organized in pipeline avoiding confliction, as Fig. 7(b)
shows. The initial latency between two rows is NP/4 clock cycles,
and the FFT/IFFT units are in full operation. Table 4 shows the com-
parison on processing latency and hardware cost of 2D FFT/IFFT
for motion detection. Our proposed reusable parallel FFT/IFFT im-
plementation outperforms [2] by 2.38x in processing latency under
the same 100 MHz clock frequency, and our design reduces 25%
logic resource and >40% DSP.

4.3 LSTM Inference Kernel
Fig. 8 shows the proposed microarchitecture for the LSTM inference
kernel [3]. The LSTM inference for all distributed image patches
can be fully unrolled. However, it will cause a linear increase on
hardware cost as the number of image patches increases. In order
to save the computation resource and balance the processing time
for each stage of the non-rigid motion correction algorithm, we
shared the LSTM kernel in predicting motion vector components in
each patch, and reused the same kernel for all patches. We stored
weights and states for all LSTM instantiations in an affordable
on-chip buffer. Inside each LSTM kernel, the arithmetic units are
unrolled by a factor of 4 corresponding to the number of gate types
in the LSTM model. Within each unrolled unit, the matrix vector
multiplication between LSTM weights and states can be pipelined
with initial interval (II) equal to 1.

×

×

ACC

×

×

ACC

×

×

ACC

×

×

ACC

16-bit IN

Update H

16-bit Hi

I Gate G Gate F Gate O Gate

4 x N x16-bit

4 x N2 x 16-bit

Weigh Buffer Arithmetic Unit

Unrolling Factor = 4

P
ip

el
in

e
II

 =
 1LSTM-2LSTM-1

(x,y)
rigid shift

non-rigid shift for
Patch(i,j)

x(i,j) y(i,j)

LS
TM

 W
ei

g
h

t
B

U
F

C
el

l B
U

F
G

a
te

 R
eg

 F
ile

On-chip
Memory

Figure 8: Microarchitecture for the LSTM inference [3].

Figure 9: Power measurement of the non-rigid motion cor-
rection implementation on the Ultra96 board.

Table 5: FPGA resource utilization on the Ultra96

LUT FF BRAM DSP
Contrast Filter 1211 1972 0 22
Cross Correlation 8901 12624 34 60
Interpolation 3212 5175 0 36
LSTM 2129 1896 2 28
Overall 28338 37446 139 146
Utilization 40.16% 26.53% 64.35% 40.56%

5 EXPERIMENT RESULT
We carried out the non-rigid motion correction implementation
on both the ZC706 and the Ultra96 boards. We first verified the
proposed LSTM-assisted non-rigid motion correction on the ZC706
by testing it with an external miniscope image sensor connected
through the FMC interface. Then we ported the same design onto
the Ultra96, and test it with emulated data stream generated inside
the SoC device. The operating frequency on the Ultra96 achieves
300 MHz, and the processing latency for each frame is 79.65 µs,
which leaves a large margin for consecutive calcium image anal-
ysis algorithm considering the 33-ms frame interval. The power
consumption of this implementation is 4.5 W, as shown in Fig. 9,
and the breakdown of the hardware usage is shown in Table 5. The
interpolation is realized in single precision floating point, while the
rest kernels are in 16-bit fixed-point. The adopted bit quantization
does not degrade the accuracy achieved in simulation in Section 3.2.
Besides the listed kernels, our design also included a frame buffer,
DMA controller, AXI interface and peripherals, which contribute
to the overall hardware cost.

Contrast Filter
Horizontal FFT & Rest of Cross Correlation

Interpolation + LSTM

Overlap with Readout Latency

65.28 µs

100.43 µs

33.83 µs

79.65 µs

40x

39x

1.8x 1 thr

1 thr

12 thr

82x
12 thr

(b)(a)

12.2x

32.9x

22.2x

Figure 10: (a) Breakdown of runtime on FPGA and (b) energy
efficiency gain over the CPU implementation.

We compared our implementation with the evaluation on the
Xeon E5-2680 CPUwith 12 threads. The runtime comparison results
are shown in Fig. 10(a). The comparison result shows that the FPGA
can achieve 82x speedup in processing latency over CPU. The main
reason is that the FPGA design not only speeds up the most time
consuming contrast filter by 40x, but also hides 60% runtime behind
the read-out timing of the image sensor. For the cross correlation
and the LSTM inference, we only evaluated the CPU performance
with single thread because the data dependency limits the perfor-
mance on multi threads, and the runtime is trivial compared to
the filter stage. Compared with the single-thread CPU implementa-
tion, the FPGA achieves 39x speedup for the cross correlation with
the 100.43 µs runtime, and 1.8x speedup for the LSTM inference
stage with the 33.83 µs runtime. We can potentially achieve higher
speedup for the LSTM inference by duplicating the LSTM kernels,
but benefit will be very limited considering additional hardware
resource cost given that the LSTM inference is not the bottleneck
in performance. Fig. 10(b) summarizes the energy efficiency gain
over the high performance multi-core CPU achieved by our work.
First, our proposed LSTM-based method contributes 22.2x energy
efficiency gain by reducing the computational complexity from the
algorithm level. Secondly, our FPGA system design provides 32.9x
gain by realizing consistent speedup for each kernel step. Finally,
the adoption of the state-of-the-art FPGA device adds another 12.2x
gain, in which we suppose the power consumption of the CPU
using 12 threads is 51.4 W based on the thermal design power speci-
fication, and the power consumption of the FPGA is 4.5 W. In all, we
get close to 4 orders of energy efficiency gain over a conventional
non-rigid motion correction implementation on CPU.

6 RELATEDWORK
Motion correction for calcium image has been sufficiently discussed
in previous literatures [6, 12, 13]. A non-rigid motion correction
method proposed in [13] outperforms other methods in accuracy,
but it costs a long processing time due to the high computation
complexity. [12] proposed another motion correction methods for
calcium image, but it is only suitable for offline analysis. [6] realized
a real time rigid motion correction on CPU for calcium image
analysis, but it operates offline and the runtime is >60x longer than
this work. [7] proposed FPGA acceleration for motion estimation
based on block matching, and [2] realized motion blur removal

on FPGA based on 2D FFT. [11] implemented a real-time video
stabilization on FPGA based on feature point matching. Since these
methods are not customized for calcium image non-rigid motion
correction, the accuracy performance limit their use for calcium
image analysis. Finally, beyond conventional image processing and
customized computing techniques, neural network training has
also been recognized as effective method to improve computing
efficiency in recent research [8].

7 CONCLUSION
In this paper, we proposed a non-rigid motion correction algo-
rithm for calcium image stabilization by taking advantage of the
LSTM inference. It largely reduces the computation complexity
and remains high accuracy. We introduced the FPGA design for the
LSTM-assisted non-rigid motion correction method. Our design can
achieve short latency for real-time calcium image non-rigid motion
correction and high energy efficiency, and it has the potential to be
built into existing miniaturized head mounted miniscope device.

ACKNOWLEDGMENTS
This work is partially supported by the NSF under Grant No.: CCF-
1436827 and No.:DBI-1707408. The authors would like to thank Dr.
Daniel Aharoni for his help on the miniscope device.

REFERENCES
[1] Denise J. Cai, Daniel Aharoni, Tristan Shuman, and et al. 2016. A shared neural

ensemble links distinct contextual memories encoded close in time. Nature 534
(2016), 115–118.

[2] T.N. Chandrapala, L.M.A.P. Cabral, S. Ahangama, and et al. 2012. Hardware
implementation of motion blur removal. In Int. Conf. Field Program. Log. Appl.
243–248.

[3] Zhe Chen, Andrew Howe, Hugh T. Blair, and et al. 2018. CLINK: Compact LSTM
inference kernel for energy efficient neurofeedback devices. In Proc. Int. Symp.
Low Power Electron. Des. 2:1–2:6.

[4] Gunnar Farnebäck. 2003. Two-frame motion estimation based on polynomial
expansion. In Image Anal. Springer Berlin Heidelberg, 363–370.

[5] Kunal K Ghosh, Laurie D Burns, Eric D Cocker, and et al. 2011. Miniaturized
integration of a fluorescence microscope. Nat. Methods 8 (2011), 871.

[6] Andrea Giovannucci, Johannes Friedrich, Matthew Kaufman, and et al. 2017.
OnACID: Online analysis of calcium imaging data in real time. In Adv. Neural
Inf. Process. Syst. 2378–2388.

[7] Diego Gonzalez, Guillermo Botella, Soumak Mokheerje, and et al. 2011. FPGA-
Based acceleration of block matching motion estimation techniques. In Int. Conf.
Field Program. Log. Appl. 389–392.

[8] Xin He, Liu Ke, Wenyan Lu, and et al. 2018. AxTrain: Hardware-oriented neural
network training for approximate inference. In Proc. Int. Symp. Low Power Electron.
Des. 20:1–20:6.

[9] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
Comput. 9, 8 (1997), 1735–1780.

[10] Yangqing Jia, Evan Shelhamer, Jeff Donahue, and et al. 2014. Caffe: Convolutional
architecture for fast feature embedding. In Proc. 22nd ACM Int. Conf. Multimed.
New York, NY, USA, 675–678.

[11] Jianan Li, Tingfa Xu, and Kun Zhang. 2017. Real-time feature-based video
stabilization on FPGA. IEEE Trans. Circuits Syst. Video Technol. 27, 4 (2017),
907–919.

[12] Jinghao Lu, Chunyuan Li, Jonnathan Singh-Alvarado, and et al. 2018. MIN1PIPE:
A miniscope 1-photon-based calcium imaging signal extraction pipeline. Cell
Rep. 23, 12 (2018), 3673–3684.

[13] Eftychios A. Pnevmatikakis and Andrea Giovannucci. 2017. NoRMCorre: An
online algorithm for piecewise rigid motion correction of calcium imaging data.
J. Neurosci. Methods 291 (2017), 83–94.

[14] Cong Shi, Jie Yang, Ye Han, and et al. 2014. A 1000fps vision chip based on
a dynamically reconfigurable hybrid architecture comprising a PE array and
self-organizing map neural network. In IEEE Int. Solid-State Circuits Conf. Dig.
Tech. Pap. 128–129.

[15] Christoph Stosiek, Olga Garaschuk, Knut Holthoff, and et al. 2003. In vivo two-
photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. U. S. A. 100,
12 (2003), 7319–7324.

	Abstract
	1 Introduction
	2 Background
	2.1 Conventional Non-Rigid Motion Correction
	2.2 Algorithm Complexity
	2.3 LSTM Inference

	3 Proposed Method
	3.1 LSTM-based Non-Rigid Motion Correction
	3.2 Algorithm Evaluation

	4 FPGA Design
	4.1 Contrast Filter Design
	4.2 Reused Parallel FFT/IFFT
	4.3 LSTM Inference Kernel

	5 Experiment Result
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

