Improving Polyhedral Code Generation for High-Level Synthesis

Wei Zuo1,5 Peng Li2,3 Deming Chen5 Louis-Noël Pouchet4,3 Shunan Zhong1 Jason Cong4,3
1Beijing Institute of Technology 2Peking University
3PKU/UCLA Joint Research Institution for Science and Engineering 4University of California, Los Angeles
5University of Illinois at Urbana-Champaign

ABSTRACT
High-level synthesis (HLS) tools are now capable of generating high-quality RTL codes for a number of programs. Nevertheless, for best performance aggressive program transformations are still required to exploit data reuse and enable communication/computation overlap. The polyhedral compilation framework has shown great promise in this area with the development of HLS-specific polyhedral transformation techniques and tools.

However, all these techniques rely on polyhedral code generation to translate a schedule for the program’s operations into an actual C code that is input to the HLS tool. In this work we study the changes to the state-of-the-art polyhedral code generator CLooG which are required to tailor it for HLS purposes. In particular, we develop various techniques to significantly improve resource utilization on the FPGA. We also develop a complete technique geared towards effective code generation of rectangularly tiled code, leading to further improvements in resource utilization. We demonstrate our techniques on a collection of affine benchmarks, reducing by 2x on average (up to 10x) the area used after high-level synthesis.

Categories and Subject Descriptors
B.5.2 [Hardware]: Design Aids — optimization; D.3.4 [Programming languages]: Processor — Compilers; Optimization

Keywords
Polyhedral Compilation; High-Level Synthesis; Loop tiling

1. INTRODUCTION
High-level synthesis (HLS) software tools such as AutoESL and its successor Xilinx Vivado-HLS [2] are capable of taking an input C program and generating effective RTL with performance that can rival manual design [14]. However, even for a sub-class of programs with regular loop bounds and array accesses (namely, affine programs [18]), additional efforts are still required in complement to Vivado-HLS capabilities to get the best performance – in particular to exploit data reuse opportunities in the program, generate off-chip communications, and overlap communication and computations [13, 24, 28].

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Copyright 20XX ACM X-XXXXXX-XX-X/XX/XX ...$15.00.

Recent work focusing on the polyhedral compilation model has shown great promise in automating those tasks. For instance, Alias et al. have shown how loop tiling can be exploited effectively to design a multi-buffer execution of affine programs [7]. Pouchet et al. recently presented an end-to-end system using the polyhedral model which automatically transforms the program for effective data reuse, including the handling of on-chip buffers [24]. Zuo et al. perform inter- and intra-block optimizations for high-level synthesis using polyhedral loop transformations [28]. These works make extensive use of the polyhedral compilation model, a powerful program representation that leverages strong mathematical foundations to model arbitrarily complex sequences of loop transformations in a single, well-designed optimization stage [18, 19].

One key component of the polyhedral compilation framework that needs to be adapted in the context of high-level synthesis is polyhedral code generation. This is the process where C code is generated from an optimized polyhedral representation, that implements the loop transformations set by the user. It has been the subject of intense research in the past two decades, but with a very strong emphasis on x86 CPU execution. When generating code for CPUs, we devote our attention to the code segments where the largest fraction of total time is spent, mostly ignoring segments which account for a small fraction of the computation time. On the other hand, for FPGAs these non-critical code segments could very well require more chip surface than the hot spots, and therefore need special attention too.

In this work we study how to tailor the process of polyhedral code generation for HLS and FPGA mapping purposes, with the objective of minimizing resource usage without any performance (e.g., latency) penalty. Our paper creates a solid basis for future work using the polyhedral optimization framework on top of HLS tools. We make the following contributions.

- We provide a comprehensive study of the area, performance, power and energy of various techniques for code generation in the polyhedral model. In particular, we study the tuning of arithmetic operators generated during complex loop tiling, and two alternative methods to generate loop bounds for tiled programs.
- We show that using our techniques, we can fine-tune the state-of-the-art polyhedral code generator CLooG for HLS purpose, reducing by 2x on average (up to 10x) the area used.

The paper is organized as follows. Sec. 2 provides background and motivation for our work. Sec. 3 recalls the principles of polyhedral program generation and high-level synthesis. Sec. 4 presents a collection of techniques to reduce resource usage for polyhedral codes mapped on FPGAs. Sec 5 presents an alternative loop tiling technique suited for HLS. Extensive experimental results on eleven benchmarks are presented in Sec. 6 before we conclude in Sec. 7.
2. BACKGROUND AND MOTIVATION

Optimizing programs using the polyhedral model is a three-stage process. First, a mathematical representation (made from polyhedra and matrices) of the input program is computed from its original abstract syntax tree. Second, a program transformation is computed in the form of a schedule for each dynamic instance of each syntactical statement in the program. Third, this schedule is applied to the polyhedral program representation, and a new AST that represents a program implementing this new execution order is generated. This last stage is called polyhedral code generation, and is the focus of the present work.

Polyhedral code generation has been the subject of much previous work in the past two decades [8, 23, 22, 25], culminating with the development of CLooG, a generic and scalable code generator [10, 1]. CLooG has been the de facto state-of-the-art code generator for almost a decade because of its effectiveness and generic support of arbitrary affine schedules. However, the focus for its development has been mostly about effective program execution on CPUs. That is, objectives such as reducing possible interference with branch predictors (through the avoidance of conditionals in innermost loops), or reducing the number of branches taken to execute a computation have been used to drive its development.

The advent of HLS systems has triggered more aggressive uses of the polyhedral model in the compilation process [7, 16, 11, 28, 24]. But numerous FPGA optimization metrics differ significantly from CPU optimization metrics with regard to polyhedral code generation quality. For FPGAs, controlling the resource usage (i.e., the number of LUTs, DSPs, etc.) is critical to reduce energy and/or to enable hardware replication of a functional block to reduce the total execution time. Resource sharing is key for FPGAs, and has to be achieved by using different program structures than those for CPUs. The impact of complex loop bounds as generated by polyhedral transformations can be very significant too.

All those factors drive the need for a dedicated polyhedral code generation strategy tailored for high-level synthesis purposes. Table 1 use two benchmarks to illustrate how all those aspects can be effectively tuned for HLS. We consider two stencil benchmarks, Seidel-2D and Jacobi-2D, which have been tiled for effective on-chip data reuse. In their untiled variant, as shown later in Fig. 1 for Seidel-2D, these codes use only two arithmetic operations in chip data reuse. With careful tuning of the code generation process, significantly better metrics are achieved, as shown by the Tuned rows.

Recent work on polyhedral code generation has focused primarily on parametric tiling, a code generation process where the tile sizes are not known [26, 21, 9]. However, those approaches still suffer from drawbacks when implementing the program on FPGAs, such as code size explosion and/or very complex loop bound expressions. Other work such as CLooG-VHDL focused on the generation of VHDL from a polyhedral representation [17], operating only on a subset of affine programs. In contrast, our work is applicable to any polyhedral program that can be input to CLooG. In the following we perform an extensive evaluation of several techniques to improve the resource usage and latency of polyhedral programs, leveraging key aspects of HLS such as resource sharing opportunities.

3. PRELIMINARIES

In the following, we outline the key features of polyhedral code generation and high-level synthesis.

3.1 Polyhedral Code Generation

To illustrate the underlying ideas behind program transformations in the polyhedral model and polyhedral code generation, we use the code in Fig. 1 as a driving example.

![Figure 1: Seidel-2D](image)

Iteration domain. The iteration domain of a syntactic statement (8 in Fig. 1) precisely captures the set of dynamic instances of the statement during the program execution. It is modeled using a (parametric) polyhedron \mathcal{D}_R, whose bounding hyperplanes are an affine form of the surrounding loop iterators (t, i, j) for R and constants whose value are unknown at compile-time (TSTEPS and N here). The iteration domain of R is:

$$\mathcal{D}_R : \{(t, i, j) \mid 0 \leq t < \text{TSTEPS} \land 1 \leq i, j < N - 1\}$$

The set \mathcal{D}_R contains exactly one integer point per executed instance of R, and this point has as coordinates the value taken by the surrounding loop iterators when the instance is executed. Visually, \mathcal{D}_R is a 3D rectangle of size roughly $\text{TSTEPS} \times N \times N$. In the polyhedral model, each syntactic statement in the program is associated with its iteration domain. These are input to the polyhedral code generation process, together with an order in which instances (e.g., each point in each iteration domain) have to be executed.

Scheduling function. The order in which instances are executed is modeled with a (multidimensional) affine function. Each statement has its own scheduling function, which associates a (multi-dimensional) timestamp to each point in the iteration domain. For instance, in order to make loop tiling valid, it is first required to order the execution of the instances of R. This is achieved by the following scheduling function Θ_R:

$$\Theta_R(t, i, j) = (t, t + i, 2t + i + j)$$

This scheduling function assigns to each 3-dimensional point (t, i, j) in \mathcal{D}_R another 3-dimensional point whose coordinates are computed by the function Θ_R. One may note that as Θ_R is restricted to be an affine form of t, i and j, then Θ_R can be written in the form of a matrix.

Code generation. For a given program, the iteration domain and scheduling function of each statement are input to the polyhedral
code generator. The goal is to generate a new AST, made of for loops, if conditionals, and the statements, which scan each iteration domain in the order described by the schedule. Loop transformations are implicitly modeled during this process: for example, if instances from two statements are scheduled at the same time, then they will share a common surrounding loop scanning those instances in the generated code, thereby achieving loop fusion.

The process is as follows. First, the new schedule is embedded in the original iteration domain Φ_k to create a new iteration domain Φ'_k such that the lexicographic order of points in Φ_k is strictly identical to the ordering specified by Φ'_k. Then, a valid AST (using loops) is generated, scanning Φ'_k in lexicographic order. This two-step approach allows the design of a single, schedule-independent code generation primitive that scans all points in each input polyhedra in lexicographic order, provided that the user-defined schedule of operations has been integrated in the original iteration domain first. For instance, using the example above, we get:

$$\Phi'_k : \{(c0, c1, c2) \mid 0 \leq t < TSTEPS \land 1 \leq i, j < N - 1 \land c0 = t \land c1 = t + i \land c2 = 2t + i + j\}$$

Visually, Φ'_k is a 3D parallelogram obtained by "skewing" Φ_k along two dimensions. Syntactic code scanning each of the new domains is then generated. Starting from the outermost dimension (e.g., $c0$ in our example), each new iteration domain is projected onto this dimension. The range of this projection (e.g., $0 \leq c0 < TSTEPS$) determines the loop bound for this dimension. If there are multiple statements, and/or the projection is not contiguous, then possibly many loops are generated, each scanning a contiguous set of points in the projection. This process of creating multiple loops to cope with having possibly different statements covering different ranges in the projection is called separation [25, 10], and is key to effective CPU code generation.

The alternative is to generate a single loop that iterates on the hull of the projection, and use if conditionals inside this loop body to skip loop iterations that do not correspond to a dynamic statement instance to be executed. This leads to code with less loops being generated, at the cost of having inner conditionals that are frequently evaluated. In contrast, separation leads to a higher number of loop nests, but with a lower number of conditionals inside them. This has been shown to be a significantly more effective approach for modern CPUs [10]. However, we show in Sec. 4 that this approach is often detrimental for HLS.

Once the (list of) range(s) on the outermost dimension has been computed, the process is recursively applied on the next dimension (e.g., $c1$ in our example) [10]. That is, for each range of $c0$ obtained previously, we project out Φ_k along the $c1$ dimension and repeat the process of possibly separating the projections into multiple contiguous regions. There is only one range for $c0$ in our example, and we get $c0 + 1 \leq c1 \leq c0 + N - 2$ for the range of $c1$. Fig. 2 shows the result of this algorithm when applied to a simple, single-statement program.

```plaintext
for (c0 = 0; c0 < (TSTEPS + 1)); c0++)
for (c1 = c0 + 1; c1 < c0 + N-2; c1++)
  for (c2 = c0 + c1 + 1; c2 < c0+c1 + N -2; c2++)
    i = 1; -1* c0 + c1;
  ;
  j = 1; (-1* c0 + c1) + c2;
```

Figure 2: Seidel-2D after skewing to enable tiling

One may note that as output, we obtain a transformed program where loop skewing has been applied on two of the loops. As a result, now all data dependences have positive components, and all loops are permutable; therefore, tiling can now be applied on all loops, including the time loop t [12].

Artifacts of polyhedral code generation

Despite its elegant expression, polyhedral code generation can very quickly lead to the generation of extremely complex codes. This is illustrated with the Jacobi-2D example in Sec. 2 where a transformation that achieves loop fusion, skewing, and multidimensional tiling leads to a code containing 13 loops and 12 conditionals. This complexity mainly comes from the following points:

First, when the projection along a given dimension cX is not a simple inequality (i.e., $t \leq cX$), but a conjunction of inequalities (i.e., $l_1 \leq cX \land l_2 \leq cX$), then min/max expressions are generated to correctly capture that the loop bound is a conjunction of expressions (i.e., $\min(l_1, l_2) \leq cX$). Such conjunctions arise quickly with tiled programs with more than one statement, and/or programs with parametric loop bounds.

Second, when applying loop tiling in the polyhedral model, one popular approach is to insert new dimensions in Φ to model the loops scanning the set of tiles created; these are called inter-tile loops, or tile loops. The loop bounds for the existing dimensions are adapted so that they scan only the body of a tile; they are called intra-tile loops, or point loops. Inter-tile loops execute a fraction of the loop’s original iteration range. That is, if the loop originally iterates N times and the tile size is 32, then a loop with $N/32$ iterations (the tile loop) is created, and a loop with 32 iterations (the point loop) is created. This creates division expressions in the loop bounds, in conjunction with cell and floor operations.

Third, when separation is applied, numerous loop nests are generated to capture all possible cases of statement combinations. Intuitively, for a tiled program, we will have cases where all statements are executed inside a given tile, or where only one of the statements is in the tile, where the tile is a full rectangle, or where it is only a partial rectangle, etc. Most of those cases are corner cases that arise very infrequently in the program execution, but for which resources on a FPGA will be required.

Our objective in this work is to control and tailor those artifacts so as to minimize their impact on the FPGA design, in particular in terms of resource usage and total latency.

3.2 High-Level Synthesis

High-level synthesis (HLS) plays a central role in boosting the productivity in hardware accelerator design by automatically transforming the high-level untimed algorithmic description to low-level cycle-accurate RTL specifications. First, the input program is translated into a control/dataflow graph (CDFG) by a compiler front-end. Some common optimization techniques, including dead-code elimination, constant propagation and common subexpression elimination, could be performed on the intermediate representation.

Operation scheduling and resource binding are the key steps at the heart of high-level synthesis. During the operation scheduling step, HLS tools will determine in which cycle each operation will occur. The scheduling objective is optimized considering various design constraints including dependency constraints, timing constraints and resource constraints. The resource allocation step determines the amount and type of resources, and binding determines which operations use which resources. For example, HLS tools will automatically determine if two add operations will share the same adder by time-multiplexing or use two separated adders. Since the decisions in the resource allocation step can influence the scheduling of operations, sometimes the two steps are iterated [15].
Due to the inherently parallel nature of synthesized hardware architecture, HLS tools have different design trade-offs than software compilers. For example, divergent branches in the innermost loop, which could possibly flush the pipeline of a processor, will not be a problem for a system generated by the HLS tool.

4. FINE-TUNING CLOOG FOR HLS

We now present a collection of alternative syntactic code generation schemes, each targeting a particular artifact of polyhedral code generation. We focus our work on CLooG, and our reference point uses the default setting of CLooG [1]. All developments proposed are tuned for this software. To evaluate the impact of our techniques, we use as input programs a collection of numerical benchmarks from the PolyBench/C 3.2 suite [5], which are tiled using the tiling hyperplane method implemented in the Pluto software [12]. We particularly focus on five benchmarks for the detailed analysis of each individual optimization presented in this section before reporting their combined impact for eleven benchmarks in Sec. 6.

4.1 Optimization Metrics

In order to quantify the quality of a design, we use a set of FPGA-specific metrics that will be collected for each program variant we evaluate. Those metrics are as follows.

For the area, we consider the number of LUTs, FFs, slices, BRAMs and DSPs. Modern FPGA devices contain a heterogeneous mixture of different kinds of hardware blocks. Lookup table (LUT) elements give the FPGA devices the flexibility to implement arbitrary digital logic using truth tables. Most commonly used hardware elements, such as registers, memory blocks and arithmetic function units, are integrated as dedicated hardware blocks such as flip-flop (FF), block ram (BRAM) and digital signal processor (DSP) units in modern FPGA devices. For the performance, we consider the critical path and execution cycles. The frequency of a FPGA design is determined by the delay of its longest path, usually referred to as the critical path (CP). The overall latency is the product of CP and the number of execution cycles. For power, both dynamic power and static power are considered. Experimental results show that the static power of Xilinx Virtex-6 VLX75T varies very little (from 1290.24 mW to 1295.23 mW) while the dynamic power can change from 1.97 mW to 309.93 mW. The total energy consumption is also reported for our complete experiments in Sec. 6.

4.2 Experimental Setup

Generating program variants. Our framework is based on PoCC, the Polyhedral Compiler Collection [4], which includes both CLooG and Pluto. We particularly consider four stencil computations from PolyBench: Jacobi-1D (J1D) is a 1D 3-point iterative Jacobi process, Jacobi-2D (J2D) is a 2D 5-point iterative Jacobi process, Seidel-2D (Seid) is a 2D 9-point iterative Seidel process, and FDTD-2D (FDTD) is a finite-domain time difference discrete solver. In addition, we use a matrix-multiplication kernel GEMM. These five codes each benefit from aggressive tiling and have a large data reuse potential; and the four stencils pose numerous code complexity challenges when the required transformations for tiling have been applied. The loop bounds of GEMM remain constant numbers with simple rectangular shape after loop tiling, and we use this benchmark to validate that our techniques are not detrimental in the case of simple, regular benchmarks. For all we chose a tile size of $5 \times 20 \times 20$, enough to exploit most of the available data reuse. Additional benchmarks are used in later Sec. 6. For each tiled program, we perform code generation using different techniques described later in this section. Each variant obtained (possibly through combining several techniques) is synthesized as described below.

We use problem sizes of 20 for the time loop of stencils and 500 for each remaining loop in the programs. We note that the final FPGA design after HLS would not differ much if we used larger problem sizes: the core computation is a tile (of size $5 \times 20 \times 20$). Increasing the problem size only changes the number of iterations of the outer loops in the tiled program (those which iterate on the set of tiles), therefore it has little to no impact on the design.

Program synthesis. The optimized code segments are then synthesized and implemented using high-level synthesis, logic synthesis and physical implementation tools. The Xilinx Virtex-6 FPGA device, Xilinx Vivado 2012.3, and Xilinx ISE 14.3 tools are used in our experiments. Various optimization techniques such as constant propagation, common sub-expression elimination and global value numbering are automatically applied by the LLVM compiler used in Vivado-HLS.

Area utilization (represented by the number of LUTs, FFs and DSPs used) and the critical path delay are reported by ISE after place-and-route. Execution cycles are reported by a cycle-accurate SystemC simulator with the target circuit and test bench as the input. During the simulation, switching activities of each wire are traced by the simulator using value change dump (VCD) files. Power data is reported by the Xilinx XPower tool with the place-and-routed circuits and the circuit simulation traces as the input.

4.3 Polyhedra Separation

The first technique we investigate relates to the issue of choosing a code structure with more loop nests and less conditionals – that is, using polyhedral separation – versus choosing a code structure with less loop nests but more (inner) conditionals – that is, no separation is used. CLooG offers options to control separation, and we evaluate the impact of turning it on (e.g., separation happens at all loop levels, which is the default setting) or off.

The benefits of turning off separation are: (1) it reduces the code size, and reduces the number of syntactic statements; (2) as statements are syntactically closer, typically under the same loop nest, the HLS tool has a better opportunity for resource sharing between the computing elements of the statements (they are typically made of numerous fixed/floating point arithmetic operations); (3) fewer loop nests will possibly reduce the area consumed by complex loop bound calculation. On the other hand, the drawbacks of turning off separation are: (1) the creation of conditionals that have to be evaluated for each dynamic instance of a statement (i.e., $T \times N^2$ for Seidel-2D); (2) loops with possibly more iterations than strictly needed; and (3) more pipeline stages added to the loop body. Table 2 shows the impact of separation on four representative benchmarks.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>LUT</th>
<th>FF</th>
<th>DSP</th>
<th>CP(ns)</th>
<th>Cycle</th>
<th>Power(mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDTD-sep</td>
<td>5900</td>
<td>2435</td>
<td>56</td>
<td>11311</td>
<td>1282394</td>
<td>1378.49</td>
</tr>
<tr>
<td>FDTD-nosep</td>
<td>5595</td>
<td>1669</td>
<td>40</td>
<td>8965</td>
<td>11500269</td>
<td>1452.56</td>
</tr>
<tr>
<td>GEMM-sep</td>
<td>1822</td>
<td>1532</td>
<td>14</td>
<td>7609</td>
<td>14567698</td>
<td>1302.43</td>
</tr>
<tr>
<td>GEMM-nosep</td>
<td>1822</td>
<td>1532</td>
<td>14</td>
<td>7609</td>
<td>14567698</td>
<td>1302.43</td>
</tr>
<tr>
<td>J1D-sep</td>
<td>1192</td>
<td>7586</td>
<td>14</td>
<td>8435</td>
<td>7638461</td>
<td>1384.48</td>
</tr>
<tr>
<td>J1D-nosep</td>
<td>11327</td>
<td>7350</td>
<td>14</td>
<td>8100</td>
<td>5724101</td>
<td>1411.92</td>
</tr>
<tr>
<td>J2D-sep</td>
<td>24818</td>
<td>13351</td>
<td>35</td>
<td>8990</td>
<td>13356049</td>
<td>1415.77</td>
</tr>
<tr>
<td>J2D-nosep</td>
<td>14216</td>
<td>10103</td>
<td>27</td>
<td>8582</td>
<td>21809977</td>
<td>1427.02</td>
</tr>
</tbody>
</table>

First, for the case of Seidel-2D and GEMM, turning on or off separation has no impact: a single loop nest is being generated, identical with or without separation. For all other cases, we observe

1To save the simulation time and space, only the first 10ms of the entire trace is recorded.
a strong benefit in terms of resource savings. However, the impact on the latency varies from benchmark to benchmark. Despite both being stencils, opposite results are observed for Jacobi-2D and FDTD-2D. This is due to the two contrary effects introduced by turning off polyhedra separation. On the one hand, turning off separation will reduce the number of loop nests, which could reduce the cost of starting and ending outer loop nests. On the other hand, turning off separation will introduce branch conditions in the innermost loop nest, which could possibly increase the pipeline stages. The extra cycles to fill and drain longer pipelines is non-trivial considering the small innermost loop trip counts after loop tiling. For Jacobi-2D, complex conditions with division in the innermost loop increases the pipeline stages from 33 to 77. Techniques described in Sec. 4.4 will greatly bridge this gap.

4.4 Loop Bounds Tuning

We now study a collection of alternatives to generate the loop bound expressions. In particular, we study 1) the impact of hoisting common expressions in loop bound computations as early as possible, 2) the impact of using integer or bit operations in place of the default floating-point operations generated by CLooG, and 3) alternatives to compute conjunctions of constraints.

Hoisting and CSE. We first conducted experiments to hoist the loop bound computations as early as possible, and perform basic common subexpression elimination. Production compilers using SSA representation like LLVM use global value numbering (GVN) [3] to eliminate obviously redundant expression computations, such as those generated by polyhedral code generation. Our experiments were aimed at validating that Vivado-HLS was able to hoist and simplify loop bounds as expected through hoisting and GVN passes. We observed that in all cases, performing hoisting and common subexpression elimination in the input program did not result in any improvement in any of the metric. We therefore concluded that Vivado-HLS was already able to perform these optimizations effectively.

We also point out that Vivado-HLS takes as input a C program where all loop bounds are known at compile-time: they are expressions made of only compile-time constants and loop iterators (for instance, TSTEPS is replaced by 20, n by 500, etc.). The required complex loop bound expressions using ceil/floor/min/max cannot be simplified further by Vivado-HLS compiler passes, thus motivating the techniques developed in this paper.

Division Optimization (dopt). In polyhedral code generation, four operations are heavily used, particularly for tiled codes. Those operations relate to the division of an expression by a constant integer value (taking either the ceil or floor of the result), typically the tile size, and conjunctions of expressions (taking either the min or max of various expressions). The default implementation of those functions in CLooG is shown below, with the mathematical operation on the left, and its C implementation on the right.

\[
\begin{align*}
\text{ceil}((\text{double})(x)) / ((\text{double})(y)) & \quad (x > 0) \? (1 + (x - 1)/y) : (x/y) \\
\text{floor}((\text{double})(x)) / ((\text{double})(y)) & \quad (x < 0) \? (1 + (x - 1)/y) : (x/y)
\end{align*}
\]

\[
\begin{align*}
\text{min}(x,y) & \quad (x < y) \? x : y \\
\text{max}(x,y) & \quad (x > y) \? x : y
\end{align*}
\]

These operator implementations are known to perform very effectively for CPUs. However, the use of floating point operations in loop bound computations is, of course, to be avoided as much as possible on FPGAs. We have evaluated a series of alternative implementations of these operators. First, IntDiv replaces the floating-point division by the appropriate integer division and offset \((x/a)\) and \((y/b)\) are integer expressions, so the C semantics of \(x/y\) is an integer division:

\[
\begin{align*}
\left\lceil \frac{x}{y} \right\rceil & \quad (x > 0) \? (1 + (x - 1)/y) : (x/y) \\
\left\lfloor \frac{x}{y} \right\rfloor & \quad (x < 0) \? (1 + (x - 1)/y) : (x/y)
\end{align*}
\]

Second, MulUB is a technique to scale the upper bound constraints to eliminate division whenever possible. That is, \(cX \leq \frac{x}{y} \) is replaced by \(y \cdot cX \leq x\). In the case of conjunction of constraints, the largest common multiple is used as the scaling factor.

Third, LcmLB is a technique to scale the lower bound constraints, to eliminate division whenever possible. That is,

\[
\left\lceil \frac{x}{y} \right\rceil \leq cX \quad \land \quad \left\lfloor \frac{u}{v} \right\rfloor \leq cX
\]

is replaced by

\[
\left\lceil \frac{\text{lcm}(x,y)}{y} \right\rceil \cdot \frac{\text{lcm}(x,y)}{y} \leq cX
\]

and the least common multiple \(\text{lcm}(x,y)\) can be computed at compile time if \(y\) and \(v\) are constant numbers. We report the cumulative impact of these three techniques in Table 3.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>LUT</th>
<th>FF</th>
<th>DSP</th>
<th>PWR(mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J2D-nosep</td>
<td>14216</td>
<td>10103</td>
<td>27</td>
<td>8.582</td>
</tr>
<tr>
<td>Seid-nosep</td>
<td>32561</td>
<td>19599</td>
<td>9</td>
<td>8.763</td>
</tr>
<tr>
<td>JID-nosep</td>
<td>11327</td>
<td>7350</td>
<td>14</td>
<td>8.100</td>
</tr>
<tr>
<td>+ MulUB</td>
<td>2495</td>
<td>1787</td>
<td>16</td>
<td>8.853</td>
</tr>
<tr>
<td>Gemm-nosep</td>
<td>1822</td>
<td>1532</td>
<td>14</td>
<td>7.609</td>
</tr>
<tr>
<td>+ LcmLB</td>
<td>2496</td>
<td>1835</td>
<td>15</td>
<td>7.946</td>
</tr>
<tr>
<td>Seid-nosep</td>
<td>32561</td>
<td>19599</td>
<td>9</td>
<td>8.763</td>
</tr>
<tr>
<td>J2D-nosep</td>
<td>14216</td>
<td>10103</td>
<td>27</td>
<td>8.582</td>
</tr>
<tr>
<td>+ MulUB</td>
<td>2495</td>
<td>1787</td>
<td>16</td>
<td>8.853</td>
</tr>
<tr>
<td>+ LcmLB</td>
<td>2496</td>
<td>1835</td>
<td>15</td>
<td>7.946</td>
</tr>
<tr>
<td>Gemm-nosep</td>
<td>1822</td>
<td>1532</td>
<td>14</td>
<td>7.609</td>
</tr>
</tbody>
</table>

A floating point division requires more than 3K LUTs and more than 3K FFs, while an integer point division will use 4 DSPs (with very little LUT and FF elements) after transforming the division to multiplication [6]. As expected, we observe a dramatic improvement in terms of LUT and FF required when floating-point operations are replaced by equivalent integer operations. However, this leads to a significant increase in DSP consumption.

The increase in the number of DSP required is largely compensated by the reduction in all other resources, reducing the total energy consumed by the system. Without any penalty on latency, these techniques bring consistent improvements on resource usage. While it may happen that optimizing lower bounds slightly increases resource usage, we nevertheless choose to systematically apply all these techniques because of their potential benefit.

Balanced min/max tree. The third technique we evaluated is a simple reorganization of conjunctions in a tree, versus a sequence. Currently, for a bound of the form

\[
cX \leq A \land cX \leq B \land cX \leq C \land cX \leq D
\]

CLooG generates \(cX \leq \min(\min(A,B),C,D)\). We instead generate \(cX \leq \min(\min(A,B),\min(C,D))\). Table 4 summarizes the re-
results. These improvements, albeit marginal, further reduce resource usage in all cases.

Table 4: Impact of balanced min/max tree (bmt)

<table>
<thead>
<tr>
<th>Code</th>
<th>LUT</th>
<th>FF</th>
<th>DSP</th>
<th>CP(ns)</th>
<th>Cycle</th>
<th>Pwr(mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDTD-ns-dopt</td>
<td>9968</td>
<td>7542</td>
<td>50</td>
<td>8.668</td>
<td>11488085</td>
<td>1364.23</td>
</tr>
<tr>
<td>+ bmt</td>
<td>9746</td>
<td>7542</td>
<td>50</td>
<td>8.273</td>
<td>11486733</td>
<td>1365.45</td>
</tr>
<tr>
<td>Gemm-ns-dopt</td>
<td>1822</td>
<td>1532</td>
<td>14</td>
<td>7.609</td>
<td>14567698</td>
<td>1302.43</td>
</tr>
<tr>
<td>+ bmt</td>
<td>1822</td>
<td>1532</td>
<td>14</td>
<td>7.609</td>
<td>14567698</td>
<td>1302.43</td>
</tr>
<tr>
<td>J1D-ns-dopt</td>
<td>2496</td>
<td>1835</td>
<td>15</td>
<td>7.946</td>
<td>3094951</td>
<td>1312.11</td>
</tr>
<tr>
<td>+ bmt</td>
<td>2496</td>
<td>1835</td>
<td>15</td>
<td>7.946</td>
<td>3094951</td>
<td>1312.11</td>
</tr>
<tr>
<td>J2D-ns-dopt</td>
<td>4968</td>
<td>4148</td>
<td>31</td>
<td>8.428</td>
<td>12148886</td>
<td>1320.37</td>
</tr>
<tr>
<td>+ bmt</td>
<td>4968</td>
<td>4148</td>
<td>31</td>
<td>8.428</td>
<td>12148886</td>
<td>1320.37</td>
</tr>
<tr>
<td>Seidel-dopt-bmt</td>
<td>7573</td>
<td>5125</td>
<td>16</td>
<td>8.039</td>
<td>159265212</td>
<td>1368.42</td>
</tr>
<tr>
<td>+ bmt</td>
<td>7495</td>
<td>5097</td>
<td>16</td>
<td>8.348</td>
<td>159265212</td>
<td>1370.78</td>
</tr>
</tbody>
</table>

16-bit iterators. The last technique leverages the fact that we can determine, at compile time, precisely the integer range of each loop iterator. In all the benchmarks we tested, the range of all iterators will not exceed 2^16 = 65536. Therefore, we can use fewer bits to represent iterators, e.g., changing iterators from 32-bit integers to 16-bit integers. This modification is useless for modern x86 CPUs, yet quite useful for HLS-generated code, especially on FPGA platforms. Typical hardware multiplier blocks in modern FPGA devices are a 25 × 18 multiplier. Our experiments show that 16-bit integer multiplication will use two less DSPs and two less pipeline stages than 32-bit integer multiplication. The range of each iterator can be precisely analyzed given all parameter values at compile-time using standard polyhedral analysis. The experimental results are shown in Table 5.

Table 5: Impact of short iterators

<table>
<thead>
<tr>
<th>Code</th>
<th>LUT</th>
<th>FF</th>
<th>DSP</th>
<th>CP(ns)</th>
<th>Cycle</th>
<th>Pwr(mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDTD-dopt-bmt</td>
<td>9746</td>
<td>7542</td>
<td>50</td>
<td>8.273</td>
<td>11486733</td>
<td>1365.45</td>
</tr>
<tr>
<td>+ short iterator</td>
<td>7259</td>
<td>5780</td>
<td>51</td>
<td>8.986</td>
<td>11357291</td>
<td>1369.41</td>
</tr>
<tr>
<td>Gemm-dopt-bmt</td>
<td>1822</td>
<td>1532</td>
<td>14</td>
<td>7.609</td>
<td>14567698</td>
<td>1302.43</td>
</tr>
<tr>
<td>+ short iterator</td>
<td>1731</td>
<td>1464</td>
<td>14</td>
<td>7.603</td>
<td>14568594</td>
<td>1302.78</td>
</tr>
<tr>
<td>J1D-dopt-bmt</td>
<td>2496</td>
<td>1835</td>
<td>15</td>
<td>7.946</td>
<td>3094951</td>
<td>1312.11</td>
</tr>
<tr>
<td>+ short iterator</td>
<td>1882</td>
<td>1493</td>
<td>15</td>
<td>7.727</td>
<td>3094421</td>
<td>1312.78</td>
</tr>
<tr>
<td>J2D-dopt-bmt</td>
<td>4968</td>
<td>4148</td>
<td>31</td>
<td>8.428</td>
<td>12148886</td>
<td>1320.37</td>
</tr>
<tr>
<td>+ short iterator</td>
<td>3698</td>
<td>2913</td>
<td>25</td>
<td>8.453</td>
<td>11760982</td>
<td>1320.35</td>
</tr>
<tr>
<td>Seidel-dopt-bmt</td>
<td>7495</td>
<td>5097</td>
<td>16</td>
<td>8.348</td>
<td>159265212</td>
<td>1370.78</td>
</tr>
<tr>
<td>+ short iterator</td>
<td>6094</td>
<td>3922</td>
<td>10</td>
<td>8.268</td>
<td>159264736</td>
<td>1372.26</td>
</tr>
</tbody>
</table>

From the results, we can see that using short iterators will benefit both area and performance (as well as total energy). One exception is the extra DSP consumed by FDTD after applying the technique. After comparing the RTL code generated, we found that the reason for this is that the same expression 5 + i is synthesized into a shifter-and-adder in one version and a multiplier in the other version. We believe that design trade-offs by HLS tool will change according to the scarcity of various resources.

5. TILING EXPERIMENTS

We now investigate the impact of two different tiling methods. First we recall the basics of loop tiling as it is implemented in PoCC (that is, what we used to generate the input codes in the previous section). Then, we present an alternative strategy to simplify the loop bounds.

Loop tiling (a.k.a. blocking) is a powerful loop transformation that partitions the iteration space into regular blocks (the tiles), so that each tile can be executed in isolation from the rest of the computation [27]. Polyhedral loop tiling is performed by extending the iteration domain of the statements to be tiled with additional dimensions (e.g., loops) to model the strip-mining and interchange of loops to be tiled [19]. Tile loops are the loops iterating on the set of tiles. Point loops are the loops iterating on each point of the iteration space inside a given tile.

Previous work has focused on improving the quality of tiled code, especially in the context of parametric tiling where the tile sizes are not known at compile-time. One way is to produce a bounding box of the iteration space and use guards to test whether the iteration to be executed actually belongs to the original iteration space. This method can introduce many "empty tiles" – particularly for complex iteration domain shapes. Other work uses approaches based on syntactic separation [21] and scanning only non-empty tile origins [26]. However, none of these fit the requirements of our problem: the code size quickly grows out of control with syntactic separation [21], and the inset/outset method does not exhibit a parallel tile schedule [26]. Goumas et al. developed a rectangular tiling technique, however it is restricted to perfectly nested loops [20].

5.1 Sub-Bounding-Box Tiling

5.1.1 Overview

Our strategy takes the advantage of the bounding box idea, and tailors it to the properties of polyhedral rectangular tiling. Our method separately considers the tile loops (inter-tile) and point loops (intra-tile). For tile loops, the key idea of our method is to use a rectangular grid superimposed on the iteration domain to be tiled as the tiling structure. Each point in this grid represents a tile origin, and we aim for the appropriate parallelogram (or hyper-parallelogram, for domains of more than two dimensions) that contains the set of all tile origins to be executed. This idea is reminiscent of parametric tiling [9], but we tailor it to fixed-size tiling. Then the planes bounding this parallelogram become simple affine expressions of other dimensions and constants. Therefore min/max operations are not needed and loop bounds are simplified. This may introduce some extra points in the tile loop domain in the form of empty tiles (tiles that are scanned but do not contain any point of the original iteration domain), but for the benchmarks we evaluated carefully, choosing the parallelogram shape leads to very few empty tiles. Fig. 3 is the original tile iteration domain and its parallelogram approximation of Seidel-2D when looking at dimensions c1 and c2.

Figure 3: Tile origin iteration space and its approximation

The points inside the solid lines are the actual tile origins. The dashed lines show the new parallelogram bounds found by our method. By adding three more tile origins (top right and bottom left), the shape is now much simpler to describe.

For the point loops, we simplify the boundary by using a rectangular grid to support each tile. This is possible since the loops
tiled are permutable. To make sure that the generated point loops only scan points in the original iteration domain, we construct the new boundary with the intersection of the tile boundaries and the original iteration domain boundaries.

5.1.2 Sub-bounding Box Algorithm

Our approach works by taking as input the polyhedral representation using standard polyhedral tiling (which will be altered by our algorithm) that is fed to CLooG; this includes the polyhedral schedule for all loops/dimensions. The algorithm is divided into two parts. First, generate the tile loop boundaries. At this step, we find the parallelogram that approximates the tile origin space, and combine the new parallelogram domain with the scheduling functions given as input. Second, generate the point loop boundaries to scan the iteration points within the tile in the order specified by the (arbitrary, user-specified) schedule. At this step, point loop boundaries are made of the intersection of the tile bounds and the iteration domain bounds.

New tile origin iteration domain. Vector \(\vec{z} \) represents the tile size, where \(s_i \) is the tile size along dimension \(i \). We construct the diagonal matrix \(L = \text{diag}(\vec{z}) \). We use tile \((L \vec{x})\) to represent the set of points in the tile whose origin is \(L \vec{x} \).

\[
\text{tile} (L \vec{x}) = \{ \vec{z} \leq \vec{x} \leq L \vec{x} + \vec{z} \}
\]

where \(\vec{z} \) represents the points within a tile. We define the set of tile origins as the set of points \(L \vec{x} \) such that \(L \vec{x} \) is the origin of the tile which is either partial tile or full tile.

\[
D_{tile} = \{ L\vec{x} | \text{tile} (L \vec{x}) \cap D_B \}
\]

where \(D_B \) is the iteration domain.

Parallelogram hull of the tile origin domain. The key idea is to find the smallest parallelogram that contains \(D_{tile} \), that is, the parallelogram hull of \(D_{tile} \). It may lead to the inclusion of tile origins for which the corresponding tile does not intersect with the program iteration domain (empty tiles). To compute this parallelogram hull, we first generate the code scanning \(D_{tile} \) using CLooG. For each loop bound using more than one expression (that is, there is a min/max expression in the associated loop bound), we select as the unique lower (resp. outer) loop bound the expression that has the largest (resp. smallest) value when the variables involved in the expression (that is, the surrounding loop iterators) are set to a value in the middle of their range. This computation is possible by operating from outermost to innermost loops, and because the value of parameters such as \(TSTEPS \) or \(N \) is known at compile-time.

The method is implemented as follows. First, we construct the tile origin iteration domain, and generate the code scanning it in lexicographic order using CLooG. Then, going from the outermost loop level to innermost, we calculate the new loop bounds. These loop bounds form the parallelogram hull of \(D_{tile} \). Finally, we assign the scheduling function for tile loops initially provided as input to CLooG for this program, and generate the code scanning \(\text{phull} (D_{tile}) \) with CLooG.

Generating the point loops. Once the tile origins are computed, we need to generate the code scanning the iteration points within one tile. To ensure that it only scans points in the original iteration space, the bounds are made up of the intersection of the tile bounds and the iteration space bounds.

Since we are using rectangular tiling, the code generation for point loops is simple, and also reminiscent of parametric tiling [9]. We use a rectangular grid to model tiling, where the grid spacing equals the tile size. First we generate the code scanning the input iteration domain without tiling (that is, it implements the schedule given to CLooG). Then we post-process the generated code such that, for each lower bound \(l_t \) and upper bound \(u_t \), we add the tile lower bound \(s_i + t_i \) and upper bound \(s_i + t_i + s_i - 1 \), where \(s_i \) is the tile size of the \(i \)-th dimension, and \(t_i \) is the tile origin iterator for dimension \(i \) generated at the previous stage. Finally, the lower bound and upper bound are written in the format of \(\max(l_t, s_i + t_i) \) and \(\min(u_t, s_i + t_i + 1) \). The complete code is created by making this modified code the body of the innermost loop generated during the tile loop code generation mentioned above.

Fig. 4 illustrates this process: dots on the lower left corner of each tile represent tile origins, other dots represent iterations inside each tile. The dashed lines bounds the iteration domain. The boundary is the intersection of the iteration domain bounds and the tile grid.
Parametric tiled code was generated with PTile and we set the symbolic tile sizes to be constants \((5 \times 20 \times 20)\). For fair comparison, as parametric tiling requires even more complex loop bound expressions that could not be optimized with the techniques presented in Sec. 4, we did not apply any of these optimizations anywhere. The results are in Table 7.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>LUT</th>
<th>FF</th>
<th>DSP</th>
<th>CP(tns)</th>
<th>Cycle</th>
<th>Pwr(mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seid+BB</td>
<td>6653</td>
<td>4310</td>
<td>19</td>
<td>8.12</td>
<td>159619308</td>
<td>1354.29</td>
</tr>
<tr>
<td>Seid+PTile</td>
<td>10787</td>
<td>7140</td>
<td>23</td>
<td>8.992</td>
<td>16209843</td>
<td>1361.80</td>
</tr>
<tr>
<td>J2D+BB</td>
<td>5134</td>
<td>3995</td>
<td>32</td>
<td>8.212</td>
<td>12011882</td>
<td>1298.89</td>
</tr>
<tr>
<td>J2D+PTile</td>
<td>8626</td>
<td>5919</td>
<td>23</td>
<td>8.938</td>
<td>21647016</td>
<td>1301.98</td>
</tr>
<tr>
<td>J1D+BB</td>
<td>2706</td>
<td>1959</td>
<td>18</td>
<td>7.909</td>
<td>3125028</td>
<td>1296.98</td>
</tr>
<tr>
<td>J1D+PTile</td>
<td>5337</td>
<td>3814</td>
<td>17</td>
<td>8.625</td>
<td>8512131</td>
<td>1296.18</td>
</tr>
<tr>
<td>FDTD + BB</td>
<td>8386</td>
<td>6371</td>
<td>51</td>
<td>8.949</td>
<td>11225174</td>
<td>1297.99</td>
</tr>
<tr>
<td>FDTD + PTile</td>
<td>10728</td>
<td>8123</td>
<td>22</td>
<td>8.966</td>
<td>35509389</td>
<td>1303.84</td>
</tr>
</tbody>
</table>

The results show that compared to parametric tiling, the sub-bound-ing box method uses less resources and is much faster. This is because PTile uses more complex loop bounds for symbolic tile sizes, including numerous floating point operations. Not only do they increase the resource cost, but they also make the dependence analysis in the HLS tool very conservative, this leads to an increased initiation interval (II) for the pipeline. In our experiment, the II for the sub-bounding-box is 3, while for parametric tiling it is 6. We conclude that a direct use of the PTile software out-of-the-box would not be an effective method for tiled code generation.

6. EXPERIMENTAL RESULTS

Based on the analysis in previous sections, we learned that turning off polyhedra separation, optimizing division operations, using hierarchical min/max operations, short iterations, and simplifying loop bounds using sub-bounding-box tiling, could benefit polyhedral code generation for high-level synthesis. In this section, all these optimization techniques are integrated and applied on a set of eleven computation kernels and applications.

6.1 Experiments Setup

We use a set of benchmarks from PolyBench/C 3.2 [5], with small datasets (array sizes are typically 500 in each dimension) and a tile size of \(5 \times 20 \times 20\), which is large enough to exploit the vast majority of the data reuse in all benchmarks we evaluated. As programs are tiled, larger problem sizes would simply lead to increasing the number of tiles visited, by increasing the iteration count of the outer (tile) loops; this is not expected to have any significant impact on the computed design. In the experiments, only the computation module is evaluated. Off-chip communication time is ignored, and memory utilization is omitted in the experimental results. Indeed, effective techniques to reduce off-chip communication while reducing the on-chip buffer size have been developed in previous work [24], and these considerations are orthogonal to the present work. Double precision floating point is used as the main data type in computations as in the original code. A description of each benchmark can be found in Table 8. In all versions, the innermost loops are pipelined. Macro \texttt{USE_SCALAR_LB} is defined, and Vivado-HLS inter-loop dependence pragmas are added.

6.2 Complete Results

Table 8 describes all the raw data reported by the tool-chain including the various resource usage, critical path, execution cycles and power consumption. We generated codes 1) using CLooG with default parameters, 2) using CLooG but turning off polyhedra separation option, and 3) using CLooG with all optimization techniques described in this paper (mentioned as Default, NoSep and HLSOpt versions thereafter).

In addition to these raw metrics, we also use Eq. (1) and Eq. (2) to measure the total latency and energy consumed by the target circuit with the given inputs. Experimental results show that for the benchmark selected in this paper, a large fraction of power consumed is static power, ranging from 76.4% to 99.8%. If only a portion of the target FPGA device is used, the rest of the device could possibly be used by some other modules. Considering this, the static power of the whole FPGA device can be conceptually divided between multiple modules according to the area utilization. Here max \((\frac{\text{LUT}_{\text{used}}}{\text{LUT}_{\text{Avail}}}, \frac{\text{FF}_{\text{used}}}{\text{FF}_{\text{Avail}}}, \frac{\text{DSP}_{\text{used}}}{\text{DSP}_{\text{Avail}}})\) is used as the metrics to represent the proportion of the FPGA device used by a certain module. The area utilization is overestimated as we select the largest ratio between used and available hardware resources, computed individually for LUTs, FFs and DSPs. Using this notion, we use a Normalized Energy metric in this paper to reflect the quality of the generated circuit with area, performance and power information included (Eq. (4)). These metrics are computed as follows.

\[
\text{Latency} = \text{Critical Path} \times \text{Execution Cycles} \quad (1)
\]

\[
\text{Energy} = (\text{Pwr}_{\text{Static}} + \text{Pwr}_{\text{Dyn}}) \times \text{Latency} \quad (2)
\]

\[
\text{Area ratio} = \max \left(\frac{\text{LUT}_{\text{used}}}{\text{LUT}_{\text{Avail}}}, \frac{\text{FF}_{\text{used}}}{\text{FF}_{\text{Avail}}}, \frac{\text{DSP}_{\text{used}}}{\text{DSP}_{\text{Avail}}} \right) \quad (3)
\]

\[
\text{Energy norm} = \left(\text{Area ratio} \times \text{Pwr}_{\text{Static}} + \text{Pwr}_{\text{Dyn}} \right) \times \text{Lat}. \quad (4)
\]

Latency, energy, area Ratio and normalized Energy calculated for the three implementations for all the benchmarks are shown in Fig. 5-8.

Energy. Since energy is proportional to both latency and power, the NoSep version could increase or decrease the execution latency for different benchmarks. The latency of the HLSOpt version is consistently shorter than the NoSep version. For LU, HLSOpt is slightly slower than the Default version by 3.2% due to longer critical path. For other benchmarks, HLSOpt can reduce the execution latency by 0.1% (GEMM) to 61.8% (J1D) when compared to Default. The average latency reduction over the 11 benchmarks is 17.5%.

Area Ratio. Experiment results in Fig. 7 show that the techniques proposed in this paper are quite efficient for area reduction. The area reduction of HLSOpt vs. Default is 0% (GEMM) to 61.8% (J1D) with an average of 21%. Total energy reduction of HLSOpt over Default ranges from 0.1% (GEMM and Lug) to 63.8% (J1D) with an average of 17.2% area reduction.

Normalized Energy. Considering the significant area reduction, energy reduction is much more noticeable after separating the static power according to the area consumption. Results in Fig. 8 show a maximum reduction in normalized energy consumption of 93.6% (Dynp), for an average reduction of 59.8%.

7. CONCLUSION

Despite significant progress achieved by high-level synthesis tools, numerous subsequent transformations of the input C code are still...
<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Description</th>
<th>Version</th>
<th>LUT</th>
<th>FF</th>
<th>DSP</th>
<th>CP(ns)</th>
<th>Cycle</th>
<th>Static Pwr</th>
<th>Dyn. Pwr</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADI</td>
<td>Alternating Direction Implicit solver</td>
<td>Default</td>
<td>7542</td>
<td>7279</td>
<td>34</td>
<td>8.993</td>
<td>174425051</td>
<td>1292.34</td>
<td>96.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NoSep</td>
<td>7542</td>
<td>7279</td>
<td>34</td>
<td>8.993</td>
<td>174425051</td>
<td>1292.34</td>
<td>96.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HLSOpt</td>
<td>6843</td>
<td>6167</td>
<td>24</td>
<td>8.484</td>
<td>170436051</td>
<td>1292.31</td>
<td>95.39</td>
</tr>
<tr>
<td>dynprog</td>
<td>Dynamic programming (2D)</td>
<td>Default</td>
<td>14485</td>
<td>9636</td>
<td>34</td>
<td>8.993</td>
<td>174425051</td>
<td>1292.34</td>
<td>96.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NoSep</td>
<td>11326</td>
<td>7299</td>
<td>7</td>
<td>7.904</td>
<td>7494801</td>
<td>1292.40</td>
<td>99.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HLSOpt</td>
<td>1399</td>
<td>1033</td>
<td>8</td>
<td>8.271</td>
<td>6048301</td>
<td>1290.24</td>
<td>1.97</td>
</tr>
<tr>
<td>FDTD-2D</td>
<td>2-D Finite Different Time Domain Kernel</td>
<td>Default</td>
<td>39803</td>
<td>24532</td>
<td>56</td>
<td>11.313</td>
<td>12622094</td>
<td>1292.11</td>
<td>86.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NoSep</td>
<td>25595</td>
<td>16692</td>
<td>40</td>
<td>8.965</td>
<td>11500269</td>
<td>1293.73</td>
<td>158.84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HLSOpt</td>
<td>6956</td>
<td>5549</td>
<td>50</td>
<td>8.766</td>
<td>11354663</td>
<td>1291.88</td>
<td>76.18</td>
</tr>
<tr>
<td>GEMM</td>
<td>Matrix-multiply C = α.A.B + β.C</td>
<td>Default</td>
<td>1822</td>
<td>1532</td>
<td>14</td>
<td>7.609</td>
<td>14567698</td>
<td>1290.46</td>
<td>11.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NoSep</td>
<td>1822</td>
<td>1532</td>
<td>14</td>
<td>7.609</td>
<td>14567698</td>
<td>1290.46</td>
<td>11.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HLSOpt</td>
<td>1731</td>
<td>1464</td>
<td>14</td>
<td>7.603</td>
<td>14568594</td>
<td>1290.46</td>
<td>11.97</td>
</tr>
<tr>
<td>Gradient-2D</td>
<td>Jacobi-like 2D stencil</td>
<td>Default</td>
<td>30096</td>
<td>20175</td>
<td>124</td>
<td>8.000</td>
<td>20565307</td>
<td>1295.23</td>
<td>226.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NoSep</td>
<td>17798</td>
<td>13730</td>
<td>114</td>
<td>7.918</td>
<td>29568426</td>
<td>1294.59</td>
<td>197.61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HLSOpt</td>
<td>7164</td>
<td>6599</td>
<td>117</td>
<td>7.917</td>
<td>18997282</td>
<td>1292.28</td>
<td>94.01</td>
</tr>
<tr>
<td>Jacobi-1D</td>
<td>Jacobi 1D stencil</td>
<td>Default</td>
<td>11926</td>
<td>7586</td>
<td>14</td>
<td>8.435</td>
<td>7638461</td>
<td>1292.24</td>
<td>92.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NoSep</td>
<td>11327</td>
<td>7350</td>
<td>14</td>
<td>8.1</td>
<td>5724101</td>
<td>1292.84</td>
<td>119.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HLSOpt</td>
<td>1790</td>
<td>1461</td>
<td>15</td>
<td>7.988</td>
<td>3084421</td>
<td>1290.65</td>
<td>20.79</td>
</tr>
<tr>
<td>Jacobi-2D</td>
<td>Jacobi 2D stencil</td>
<td>Default</td>
<td>24818</td>
<td>13531</td>
<td>35</td>
<td>8.990</td>
<td>13356949</td>
<td>1293.36</td>
<td>142.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NoSep</td>
<td>14216</td>
<td>10103</td>
<td>27</td>
<td>8.582</td>
<td>21800977</td>
<td>1293.17</td>
<td>133.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HLSOpt</td>
<td>3236</td>
<td>2514</td>
<td>19</td>
<td>7.943</td>
<td>11752537</td>
<td>1290.86</td>
<td>29.94</td>
</tr>
<tr>
<td>Laplacian-2D</td>
<td>Jacobi-like 2D stencil</td>
<td>Default</td>
<td>26288</td>
<td>17141</td>
<td>46</td>
<td>7.975</td>
<td>13773376</td>
<td>1293.70</td>
<td>157.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NoSep</td>
<td>14908</td>
<td>11087</td>
<td>25</td>
<td>7.894</td>
<td>22460226</td>
<td>1293.64</td>
<td>155.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HLSOpt</td>
<td>3371</td>
<td>2779</td>
<td>25</td>
<td>7.661</td>
<td>11753289</td>
<td>1291.16</td>
<td>43.79</td>
</tr>
<tr>
<td>LU</td>
<td>LU decomposition</td>
<td>Default</td>
<td>12086</td>
<td>9177</td>
<td>14</td>
<td>8.553</td>
<td>1990925</td>
<td>1292.84</td>
<td>118.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NoSep</td>
<td>11718</td>
<td>8794</td>
<td>14</td>
<td>8.814</td>
<td>2102483</td>
<td>1292.88</td>
<td>120.73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HLSOpt</td>
<td>5622</td>
<td>5151</td>
<td>14</td>
<td>8.851</td>
<td>1984462</td>
<td>1291.85</td>
<td>74.52</td>
</tr>
<tr>
<td>ludcmp</td>
<td>LU decomposition</td>
<td>Default</td>
<td>5918</td>
<td>5135</td>
<td>14</td>
<td>8.932</td>
<td>4073294</td>
<td>1292.74</td>
<td>114.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NoSep</td>
<td>5564</td>
<td>4964</td>
<td>14</td>
<td>8.140</td>
<td>4079524</td>
<td>1292.71</td>
<td>113.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HLSOpt</td>
<td>5525</td>
<td>5011</td>
<td>14</td>
<td>7.741</td>
<td>4079524</td>
<td>1292.73</td>
<td>105.08</td>
</tr>
<tr>
<td>Seidel-2D</td>
<td>Seidel 2D stencil</td>
<td>Default</td>
<td>32561</td>
<td>19599</td>
<td>9</td>
<td>8.763</td>
<td>159281806</td>
<td>1293.88</td>
<td>165.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NoSep</td>
<td>32561</td>
<td>19599</td>
<td>9</td>
<td>8.763</td>
<td>159281806</td>
<td>1293.88</td>
<td>165.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HLSOpt</td>
<td>5882</td>
<td>3637</td>
<td>5</td>
<td>7.874</td>
<td>159143274</td>
<td>1291.93</td>
<td>78.02</td>
</tr>
</tbody>
</table>

Figure 5: Latency (normalized to default)

Figure 6: Energy (normalized to default)

Figure 7: Area ratio (normalized to default)

Figure 8: Normalized energy (normalized to default)
required to effectively exploit data reuse potential in the applications, and coarse- and fine-grain parallelism. The polyhedral compilation model has shown great promise in automating those tasks. However, the expressiveness and flexibility of this compilation framework comes at a cost: the programs obtained after polyhedral code generation usually contain very complex loop bounds. The core structure typically contain a hot spot loop nest and numerous other loop nests that correspond to infrequently executed cases. This is not an issue when operating on modern x86 CPUs, but is a major issue for FPGAs: extra resources are consumed for each case, including the ones with an extremely low contribution to the total execution time. Therefore, it is necessary to tailor polyhedral code generation to the specifics of FPGA execution for best results.

In this paper we investigated several techniques to reduce the resource usage for codes that are automatically generated by a polyhedral compilation framework. Focusing on Vivado-HLS and CLooG, two state-of-the-art tools, we extensively studied the impact of alternative loop bound computation techniques, and ended with systematic and significant resource savings when compared to off-the-shelf use of CLooG.

Acknowledgments. This work was supported in part by the Center for Domain-Specific Computing (CDSC) funded by NSF “Expeditions in Computing” award 0926127; China Postdoctoral Science Foundation (2012M510115); and the SRC/DARPA CFAR center. We are grateful to Xilinx, Inc. for equipment donations and financial contributions.

8. REFERENCES