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Abstract—The power wall and utilization wall in today’s processors

have led to a focus on accelerator-rich architecture, which will include a

sea of accelerators that can achieve orders-of-magnitude performance and

energy gains. The emerging accelerator-rich architecture is still in its early

stage, and many design issues, such as the efficient accelerator resource

management and communication between accelerators and CPU cores,

remain unclear. Therefore, a research platform that can enable those

design explorations will be extremely useful. This paper presents the

first cycle-accurate full-system simulation Platform for Accelerator-Rich

Architectural Design and Exploration (PARADE). PARADE can automat-

ically generate dedicated or composable accelerator simulation modules,

simulate the global accelerator management, a coherent cache/scratchpad

with shared memory, and a customizable network-on-chip—all at cycle-

level. In addition, PARADE provides visualization support to assist

architects with design space exploration. Finally, a few case studies are

conducted to confirm that PARADE can enable various system-level

design space explorations in the accelerator-rich architecture.

I. INTRODUCTION
The power wall and utilization wall have limited the scaling of

conventional general-purpose processors because most parts of future
chips cannot be simultaneously powered up. This unpowered material
is referred to as dark silicon [9]. Accelerator-rich architectures [6],
[7], [17] have been proposed to address this by designing systems
that trade dark general-purpose cores for a collection of specialized
but transiently powered accelerators. These accelerators can be cus-
tomized to provide orders-of-magnitude increased performance and
energy efficiency when compared to performing the identical task in
a conventional general-purpose CPU.

Accelerator-rich architectures are still in the early stages of
development, but are gaining more and more attention [6], [7],
[17], [11], [4]. Many design issues, especially system-level issues,
remain difficult to evaluate. This has resulted in these topics being
underemphasized in current research. Examples include accelerator
resource management and arbitration, rapid accelerator design space
exploration, communication between accelerators for the purposes of
composition and virtualization, and how CPUs and memory hierar-
chies impact accelerator performance. Therefore, a research platform
that can enable such design explorations will be extremely useful.

Existing work on such research platforms can be classified into
four main categories. The first is the virtual prototyping platform [26],
[25] to quickly model traditional multi-processor system-on-chip
(MPSoC) architectures. These platforms are usually limited to system-
on-chip (SoC) design and are difficult to apply to modeling a general-
purpose accelerator-rich architecture (ARA) that has a large number
of accelerators, complex network-on-chips (NoCs), and complex
coherent cache memory hierarchies. The second is FPGA proto-
typing, e.g., [16], [5], [4], [11], which utilizes the existing field
programmable SoC and implements the accelerators in FPGA. The
two main drawbacks are the limited system scale due to limited
FPGA resources and tedious FPGA implementation efforts. These
drawbacks make FPGA prototyping very hard to efficiently design
and evaluate an ARA. The third is RTL simulation [17], [22], [20],
which shares similar drawbacks of FPGA prototyping. The fourth one
is the flexible cycle-accurate full-system simulation used in [6], [7]
targeted for the ARA, which currently lacks modeling details and is
not accessible to the community—mainly because developing such a
simulation platform usually takes multiple person-year efforts [10].
Our goal is to contribute to the community with such an open-source

simulator in the near future to facilitate the research of accelerator-
rich architectures.

This paper presents the first cycle-accurate full-system simulation
Platform for Accelerator-Rich Architectural Design and Exploration
(PARADE). First, we model each accelerator quickly by leverag-
ing high-level synthesis tools. In addition, we provide a flow to
automatically generate either dedicated or composable accelerator
simulation modules that can be integrated into PARADE. Second,
we provide a cycle-accurate model of the hardware global accelerator
manager (GAM) that efficiently manages accelerator resources. Third,
we provide a cycle-accurate model of the coherent cache/scratchpad
with shared memory between accelerators and CPU cores, as well as
customizable network-on-chip, by leveraging the existing widely used
cycle-accurate full-system simulator gem5 [3]. Finally, we add visual-
ization support to assist architects with design space exploration. We
achieve cycle-accuracy for PARADE by leveraging the existing cycle-
accurate gem5 simulator for the CPU and cache memory hierarchy,
and high-level synthesis (HLS) and register transfer level (RTL)
simulation for the accelerator. In addition to performance simulation,
PARADE also models the power, energy and area using existing tool-
chains including McPAT [15] for the CPU and HLS and RTL tools
for the accelerator.

To demonstrate the utility and power of PARADE, we further con-
duct a few case studies of the system-level design and evaluation for
the accelerator-rich architecture. First, we illustrate how to customize
a user’s own accelerator using the Denoise [7] benchmark. Second, we
study the performance and energy benefits of accelerator-rich archi-
tectures using dedicated and composable accelerators for a variety of
application domains. Furthermore, we analyze how the performance
gains are achieved at system-level using the representative benchmark
BlackScholes [6]. Finally, we demonstrate how the visualization tool
can be used to assist architects in the design of a better system by
a case study that illustrates eliminating a potential inefficiency in the
non-uniform cache access (NUCA) design.

In summary, this paper makes the following contributions:
• The first cycle-accurate full-system simulation platform PARADE

that simulates the whole system of the accelerator-rich archi-
tecture accurately, including X86 out-of-order cores, dedicated
or composable accelerators, global accelerator manager, coherent
cache/scratchpad with shared memory, and network-on-chip.

• A fully-automated flow to generate the dedicated or composable
accelerator simulation modules and applications that use those
accelerators, by leveraging the high-level synthesis tools.

• A visualized simulation tool that assists architects in designing
better systems and evaluating system-level issues.

• Case studies that confirm the utility and power of PARADE and
show some architectural insights such as how to design the NUCA
system for accelerator-rich architectures.
The remainder of this paper is organized as follows. Section II

presents an overview of the accelerator-rich architecture and its
programming model. Section III proposes the PARADE simulation
platform and describes the details of the simulation components for
performance, power, energy and area modeling. Section IV conducts
several case studies to confirm the utility and power of PARADE.
Section V discusses related work. Finally, Section VI concludes the
paper and discusses possible future work.
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Fig. 1: An overview of an accelerator-rich architecture.
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Fig. 2: The library-based accelerator programming model and its under-
lying hardware execution mechanism.

II. OVERVIEW OF ARA ARCHITECTURE AND ITS
PROGRAMMING MODEL

We first give an overview of the accelerator-rich architecture
(ARA) and its programming model as proposed in [6], [7].

A. Accelerator-Rich Architecture
Figure 1 presents an overview of an accelerator-rich architecture.

In addition to a number of CPU cores, there is a sea of heterogeneous
accelerators. Each accelerator can be either a fully self-contained
accelerator designed to act as a dedicated device, or an accelerator
building block (ABB) that implements a small functionality with
the intention that the ABBs will be used collectively to compose a
more sophisticated functionality. To achieve high performance, each
accelerator uses a software-programmed scratch-pad memory (SPM)
and communicates with the rest of the cache memory hierarchy using
a direct memory access (DMA) engine. A hardware global accelerator
manager (GAM) is included to efficiently manage these accelerators.
Furthermore, to provide high bandwidth to the accelerators, there are
a number of last-level cache (LLC) banks and memory controllers
that are coherent and shared by both the CPU cores and accelerators.
Finally, all the components are connected by a customizable network-
on-chip (NoC).

B. Programming Model
To minimize the programming efforts of using the accelerator-

rich architecture, a library-based accelerator programming model is
provided. As shown in Figure 2.a), there are a number of accelerator
library APIs available to the users. When a user writes an application,
he/she just needs to call the library APIs in the source code and
then the compiler will compile it to a static binary. During linking,
the dynamically linked accelerator libraries provided by hardware
developers will be linked together with the static binary to generate
the final executable application binary. We also provide the accelerator
virtualization support so that multiple hardware accelerators or ABBs
can be composed into one large virtual accelerator library that is
needed by the software programmer. A detailed example of the
application programming will be provided in Section IV-B.
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Fig. 3: An overview of the PARADE simulator.

Figure 2.b) describes the hardware execution mechanism of the
application. Initially the application is running on the CPU. Whenever
the application calls an accelerator library, the CPU will query the
GAM about the wait time for all possible accelerators used by
the application. At the same time, the GAM will decompose the
virtual accelerator library into basic hardware accelerators (or ABBs)
and estimate the computation delay by each hardware accelerator.
Based on this information, the CPU will decide whether to use the
accelerators and which accelerators to use. If it estimates that it will
benefit from the accelerators, it will ask the GAM to reserve them
and then execute on the reserved accelerators; otherwise, it will stay
on the CPU software path. Once the accelerator finishes its job, it
will notify the CPU through a lightweight interrupt (LWI) [6].

III. THE PARADE SIMULATOR
To enable efficient system-level design exploration of the

accelerator-rich architecture, we simulate the whole system with
cycle accuracy, and support booting unmodified operating systems. To
contribute more benefits to the community with manageable efforts,
we design and implement PARADE based on the existing widely used
open-source architectural simulator gem5 [3] that provides flexible
system-level configurations to the core architecture, cache coherence
protocols, network-on-chip topology, and DRAM models. Figure 3
presents an overview of the PARADE simulator.
• The main elements that we contribute in PARADE are the

accelerator simulation modules that can be automatically gen-
erated through a high-level description of the accelerator, and the
reusable global accelerator manager to manage the accelerator
resources.

• We also make some necessary extensions to the gem5 simulator
to support lightweight interrupt (LWI) [6] in the core and coherent
cache memory hierarchy with accelerators.

• To further assist architects with design space exploration, we also
provide visualization support for the simulation.

• Finally, we also model the power, energy and area using the inte-
gration of various existing tools such as McPAT [15], CACTI [19],
DSENT [24], and CAD tools.

A. Automatic Generation of Accelerator Simulation Modules
To achieve high performance and low power, accelerators usually

customize the computation using deep pipelines and customize the
data access for great locality and bandwidth using software-managed
scratch-pad memory (SPM). Further data parallelism can be achieved
by duplicating the accelerator pipeline. In PARADE, we assume a
three-stage accelerator execution model. First, all input data of the
accelerator is loaded into the SPM before the computation. Second,
the computation is done using all local data in SPM. Third, all output
data in the SPM are written to the shared last-level cache (LLC)
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Fig. 4: The automation flow to generate dedicated or composable accel-
erators, as well as the applications using the accelerators.

and memory. To achieve better performance, different tasks fed into
the pipeline further overlap their computation and communication.
Stage 1 and stage 3 are simulated using the cache memory hierarchy
explained in Section III-C. For stage 2, PARADE uses a high-level
synthesis [28] based model to calculate the computation latency of
the accelerator pipeline. This model can be replaced with other open-
source models such as Aladdin [23], or a regression model, or RTL
co-simulation.

To enable a quick design of new accelerators, we provide an
automation tool chain to generate the accelerator simulation modules
in PARADE. Figure 4 describes the automation flow to generate
dedicated or composable accelerator modules. The only input that
users need to provide to the simulation module generator is the
high-level C source code for the accelerator that is compatible with
high-level synthesis tools. Then the C code will be automatically
synthesized into RTL code using high-level synthesis tools such as
AutoPilot [28]. Through RTL synthesis tools such as the Synopsys
Design Compiler [1], it can get accurate timing information such as
clock frequency, pipeline initialization interval (II), pipeline depth,
area, and power for target ASIC design. The simulation module
generator will automatically encode the timing information into the
accelerator simulation module. In addition, it will also generate
the SPM mapping, which is used to model the possible conflict
between read or write ports within the same SPM bank. In PARADE,
the number of SPM banks, SPM bank size, number of read/write
ports, read/write latency, are all configurable. Finally, the accelerator
simulation module also includes the code to functionally execute the
accelerator so as to dynamically 1) accumulate the total computation
latency (roughly ’pipeline executed iterations’ * ’pipeline II’ +
’pipeline depth’), and 2) generate the memory access addresses that
are needed for cache memory hierarchy simulation.

In addition to the automatic generation of each accelerator
simulation module, we also generate the applications that utilize
the accelerators automatically. As shown in Figure 4, to use the
accelerators, users can write the application in a data flow language
that provides the chaining information of the accelerators. Then our
program generator will automatically generate the application that
can run on PARADE, by taking care of all issues such as querying
and reserving accelerators, allocating SPMs, handling accelerator
commands and communication, freeing accelerators and notifying
CPU cores through lightweight interrupts. A detailed example of how
to customize and utilize a user’s own accelerator will be provided in
Section IV-B.

B. Global Accelerator Management
A hardware global accelerator manager (GAM) [6], [7] is pro-

vided in the accelerator-rich architecture to efficiently manage the
available accelerator resources. It is also an interface between the CPU
cores and accelerators. In addition to the SPM and direct memory

access (DMA) engine, PARADE also simulates the following key
components inside the GAM.
• Hardware Accelerator Resource Table. The GAM maintains a

resource table to track the available hardware accelerators (or
accelerator building blocks, i.e., ABBs), and the waiting time of
those that are currently in use. When the CPU core requests the
use of hardware accelerators, the GAM will query the resource
table to determine which ones are available.

• Composed Virtual Accelerator Table. To avoid the overhead of
composing the same virtual accelerator from the same hardware
accelerators or ABBs repeatedly, the GAM maintains a composed
virtual accelerator table.

• Task List for Virtual Accelerator. To enable efficient data par-
allelism, the GAM splits the requested computation (data) from
the virtual accelerator into a number of tasks (data chunks). Each
task maintains a flag marking which virtual accelerator it belongs
to, a bit flag identifying whether it is runnable or not. When the
GAM adds a task to the task list, it will prescreen all its memory
access addresses to see whether the addresses are resolvable by
its local TLB. If yes, the task is marked as runnable; otherwise it
is marked as not runnable and the GAM will issue a TLB miss
to the requesting CPU core.

• Centralized TLB. To avoid sending duplicate TLB miss requests
to the CPU core, the GAM maintains a centralized TLB that
caches the virtual-to-physical address translations for sharing by
all accelerators.

• Data Flow Interpreter. In our accelerator-rich architecture, the
applications are written in a data flow language (explained in
Section IV-B using an example). The GAM provides a data flow
interpreter to map the application onto the available hardware
accelerators (or ABBs). It first creates a task list for each
computation node (i.e., virtual accelerator) in the data flow graph,
and the task list for earlier computation node is given higher
priority. Then it will iterate the task lists from high priority to low
priority and will assign the available hardware accelerators to each
runnable task. For each task list, it will try to compose as many
runnable tasks as possible to enable efficient data parallelism,
as long as the memory pressure does not exceed the peak value
and there are available hardware accelerators. When the hardware
accelerators finish their execution, they will notify the GAM for
reinterpreting again.

C. Coherent Cache Memory Hierarchy and NoC Simulation
To enable system-level design and exploration at the cache

memory hierarchy and network-on-chip (NoC), PARADE leverages
the existing gem5 [3] simulator and makes some necessary changes.
First, the cache hierarchy is simulated by the Ruby [3] component
in gem5 that supports various cache coherence protocols. To add
coherent accelerators, we simulate a direct memory access (DMA)
engine for each accelerator. The DMA engine is plugged into the
Ruby component: it can read data from the last-level cache (LLC) and
memory to SPM, and write data from SPM to the LLC and memory.
In addition, two DMAs can communicate with each other directly
so as to support efficient data exchange between accelerator chains.
Second, the NoC is simulated by the Garnet [3] component in gem5
that supports various network topologies. We make extensions to the
NoC interface so that the accelerators and the GAM can be easily
connected to the NoC. In addition, we make extensions to support
control signal communication between CPU cores and accelerators
through NoC. Finally, we use the simple yet accurate enough DRAM
controller model [13] in gem5 to simulate the DRAM system.

D. Discussion of Cycle Accuracy
Cycle accuracy is an important metric for architectural simu-

lators since they have to reflect the right performance trend when
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Fig. 5: An example of the visualized accelerator-rich architecture.

evaluating microarchitectural designs. However, it is impractical for
us to validate the accuracy of PARADE against a real machine
since currently there are no commodity accelerator-rich architecture
machines. Instead, we try to keep each component of the simulated
architecture as accurate as possible. For the CPU, cache hierarchy,
NoC, and DRAM parts, we leverage the existing cycle-accurate
gem5 simulator that has already validated the accuracy of these
components. For the newly added accelerator part, we utilize the
timing information from widely used high-level synthesis tools (as
explained in Section III-A) where cycle-accuracy for regular-logic
accelerators is already widely accepted in the community [28]. In
this sense, our PARADE simulator is cycle-accurate. In our future
work, we also plan to validate the accuracy of PARADE against a
similar FPGA prototyping.

E. Visualization Support
To further assist architects with design and exploration, we

provide the visualization support for PARADE. The visualization tool
shows the NoC topology, including the routers and links between
them. For each router, it also shows the cores, accelerators, GAM,
L1 cache controller/accelerator DMA engine, LLC cache controller,
and DRAM controllers that are connected to it. An example of the
visualized accelerator-rich architecture is shown in Figure 5. The
visualization tool takes the access trace from PARADE and shows
the utilization for each component as shifts in color. For each certain
period, e.g., 1000 cycles, the figure shows the access frequency for
the L1 cache/accelerator DMA, LLC and DRAM, router utilization
and link utilization between routers. The color goes from light green
to dark red when the utilization increases, with dark red colors
demonstrating that the component is heavily used and could be a
system bottleneck (e.g., accelerator 0 is heavily accessing LLC 0
in Figure 5). As a result, architects can use this tool to observe and
detect potential system bottlenecks dynamically with much less effort.
In Section IV-F, we conduct a case study to demonstrate that the
visualization tool can find some potential bottlenecks that cannot be
observed only by examining final simulation results.

F. Power, Energy and Area Simulation
In addition to the performance simulation, we also provide the

power, energy and area simulation for each architecture component
by leveraging existing tools. For accelerators, PARADE uses high-
level synthesis tools such as AutoPilot [28] together with RTL
synthesis tools such as the Synopsys Design Compiler [1] for ASICs
to get power and area data. Energy can be computed as power
multiplying simulated execution time. For CPU cores, PARADE
generates necessary statistical data and feeds the data into McPAT [15]
to get power and area information. Similarly, for SPM and caches,
PARADE uses the CACTI [19] simulator. For NoC, PARADE uses the
recent DSENT [24] simulator. For DRAM, PARADE uses the simple
yet accurate enough DRAM model [13] integrated with gem5 that
uses Micron DRAM models. As a result, PARADE can be easily used

to evaluate the system performance, energy efficiency, and resource
area utilization.

IV. EVALUATION RESULTS
In this section we conduct a few case studies of the system-

level design and evaluation for accelerator-rich architectures using
PARADE to demonstrate the utility and power of PARADE. First,
we present the experimental setup for the evaluations. Second, we
illustrate how to customize a user’s own accelerator using a simple
Denoise [7] example. Third, we perform a detailed analysis of the
performance and energy gains of dedicated accelerators (dedicated
ARA) for a variety of application domains. Fourth, we compare the
dedicated versus composable accelerator-rich architectures. Fifth, we
demonstrate how the visualization tool can be used to assist architects
to better design the system by a case study for the NUCA design.
Finally, we also present the simulation speed of PARADE.

A. Experimental Setup

TABLE I: Basic parameters of the simulated X86 architecture.
Technology node 32nm
CPU 1 8-issue X86 OoO core @ 2.0GHz
Accelerators refer to Table II and Section IV-E
Coherence protocol 2-level MESI
L1 cache private, 32 KB, 2-way associate, 2 cycles
L2 cache shared, 2 MB, 32 banks, 8-way associate, 20 cycles
NoC topology 4*8 Mesh
DRAM 4 512MB 1600MHz DDR3
Simulated OS Linux kernel 2.6.22.9

In this section we describe the experimental setup. Table I
summarizes the basic parameters of the baseline X86 architecture
and the accelerator-rich architecture, which are targeted for a 32nm
technology node. The baseline X86 architecture simulates an 8-issue
out-of-order core with private 32KB L1 cache at 2GHz. There is a
2MB shared L2 cache (i.e., LLC) for all cores and accelerators, which
is divided into 32 banks for bandwidth consideration. We use a small
L2 cache size to avoid unintended cache warm-up effects (i.e., all
data are already in the LLC cache) after application initialization. We
maintain a coherent cache hierarchy for all the cores and accelerators
using the MESI protocol. There are 4 DDR3 memory controllers
where each DRAM is 512MB. All the components are connected
through a 4*8 mesh NoC. We run our simulator on an Intel Xeon
E7-4807 processor (1.87GHz) with 128GB DRAM.

To evaluate the performance and energy results of the dedicated
and composable accelerator-rich architectures, we use a wide range
of applications [6], mainly from four diverse important domains:
medical imaging, computer vision and navigation, as well as com-
mercial benchmarks from PARSEC [2]. A brief description of each
application, together with its input size, is listed in Table II. We also
list the number of dedicated heterogeneous accelerators designed for
each application in Table II.

B. Customize Your Own Accelerator

1/

vuut
5X

i=0

(xc � xi)2 (1)

First we demonstrate an example of how to customize a user’s
own accelerator using the Denoise [7] application. The core computa-
tion of Denoise is shown in Equation 1. Without loss of generality, we
show how to customize composable accelerators for Denoise. We di-
vide it into four main composable accelerator building blocks (ABBs)
as shown in Figure 6: ABB1 and ABB2 perform the polynomial add
and multiply computation; ABB3 calculates the square root; ABB4
performs division. We feed the C code of each ABB’s function into



TABLE II: Benchmark descriptions [6] with input size, and the number of dedicated heterogeneous accelerators.

Domain Application Algorithmic Functionality Input Size

# Dedicated

Accelerators

Medical
Imaging

Deblur Total variation minimization and deconvolution
1 image of size
128*128*128

4
Denoise Total variation minimization 3
Registration Linear algebra and optimizations 7
Segmentation Dense linear algebra, spectral methods, and MapReduce 1

Commercial
from Parsec [2]

BlackScholes Stock option price prediction using trivial floating point math 256K datasets 1
StreamCluster Clustering and vector arithmetic 64K 32-dimension streams 4
Swaptions Computation of swaption prices using Monte Carlo (MC) simulation 8K datasets 4

Computer
Vision

LPCIP Desc Log-polar forward transformation of image patch around each feature 128K features from 11 image of size 640*480

Texture Synthesis Procedural generation of texture image from patch; 16 images of size 512*32 5uses random number generation and random memory access

Computer
Navigation

Robot Localization Monte Carlo Localization using probabilistic model and particle filter 128K sensor datasets 1

Disparity Map Calculate sums of absolute differences and integral 2 images of size 64*64 4image representations using vector arithmetic
EKF SLAM Partial derivative, covariance, and spherical coordinate computations 128K sensor datasets 2

ABB1, Type = Poly
Input: Mem, Output:ABB2
Function:(x0-y0),(x1-y1), …M

e
m

ABB2, Type = Poly
Input: ABB1, Output: ABB3
Function: x0*y0+x1*y1+….

ABB3, Type = Sqrt
Input: ABB2, Output: ABB4
Function: sqrt(x)

ABB4, Type = Divide
Input: ABB3, Output: Mem
Function: 1/xM

e
m

Accelerator Data Flow for Denoise (Equation 1)

Fig. 6: Customized accelerators for Denoise (Equation 1).
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Fig. 7: Performance speedup of dedicated ARA compared to CPU
software baseline.

our simulation module generator, and it will automatically produce
detailed timing information and generate the simulation modules for
the ABB. To automatically generate the application that invokes these
ABBs, we provide the accelerator chaining data flow as shown in
Figure 6 that specifies the input and output of each ABB. Note that
the initial input and final output of the whole Denoise application
reside in shared memory. As demonstrated, our automation tool chain
makes customizing a user’s own accelerator very efficient.

C. Performance Speedup of Dedicated ARA
Figure 7 presents the performance speedup of dedicated accel-

erators for the medical imaging, commercial, vision, and navigation
domains compared to the CPU software baseline version. To be fair,
the software version only uses one core, and there is only one copy of
the hardware accelerator for each virtual accelerator in the application.
In addition, both versions do not optimize the data access locality.
Depending the application, the speedup varies from 6.5X to 130X.

To get a better understanding of where the performance speedup
comes from, we further conduct a detailed analysis for a representative

benchmark BlackScholes that achieves 94X speedup. Figure 8 shows
the performance breakdown for both software baseline and dedicated
ARA versions of BlackScholes; note that the Y-axis is in log scale.
Figure 8(a) compares the execution cycles of the total execution, com-
putation only, and non-overlapped communication. The computation
part achieves a speedup of 155X due to the customized 234-stage
deep accelerator pipeline. The non-overlapped communication part
achieves a speedup of 64X that lowers the whole speedup to 94X.

To further analyze how the communication part achieves such a
speedup, Figure 8(b) compares the number of total cache memory
accesses and Figure 8(c) compares the bandwidth of cache memory
access for both versions. First, as shown in Figure 8(b), the huge
number of L1 instruction cache accesses are totally removed in the
accelerator-rich architecture, as expected. Second, the total number of
SPM access in accelerators is significantly reduced (42X) compared
to the L1 data cache access in the software version. We further
investigate this reduction and find out the main reason is that in
the software version, there are a lot of registers spilling out to the
L1 data cache since the X86 architecture has a limited number of
registers, while BlackScholes has a large number of local variables.
This leads to a large number of L1 data cache accesses that usually
does not draw an architect’s attention in traditional CPU architecture.
But actually it plays a key role in performance improvement in the
accelerator-rich architecture when the number is significantly reduced.
Third, there are few LLC cache and DRAM access reductions because
we do not optimize either version. However, the achieved bandwidth
for LLC cache and DRAM access has been greatly improved, 65X
and 94X respectively, as shown in Figure 8(c). This high degree
of memory-level parallelism (MLP) achieved in the accelerator-rich
architecture also plays a key role in performance improvement and
comes primarily from the accelerator accessing memory in bursts, as
described in Section III-A.

D. Energy Efficiency of Dedicated ARA
Figure 9(a) presents the energy savings of dedicated accelerators

for the medical imaging, commercial, vision, and navigation domains
compared to the CPU software baseline version. We present the
energy savings with and without DRAM being considered because
DRAM consumes significant power and energy. Depending on the
application, the energy saving varies from 11X to 251X without
counting DRAM energy. With DRAM energy, the energy savings
become smaller, ranging from 8X to 170X.

To get a better understanding of where the energy is spent
in the accelerator-rich architecture, we further conduct a detailed
breakdown analysis for a representative benchmark, Deblur. As shown
in Figure 9(b), the consumed energy is divided into four parts:
CPU core and accelerators, LLC cache, NoC, and DRAM. We find
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Fig. 9: Energy savings of dedicated ARA compared to CPU software baseline.

that DRAM consumes most of the energy in the accelerator-rich
architecture, which is around 67% of the total energy. This suggests
that future research needs to focus more on the DRAM element,
and some techniques such as low-power DRAM and data locality
optimizations could help.

E. Dedicated vs. Composable ARA
Figure 10 compares the performance speedup and energy savings

of the composable ARA and dedicated ARA for the medical imaging
domain, compared to the CPU software baseline. To be fair, we keep
the area of both the composable ARA and dedicated ARA the same
for the domain. As a result, the composable ARA is composed of
44 accelerator building blocks (ABBs). These ABBs are distributed
evenly into the 4*8 mesh NoC; each group forms an ABB island
that is connected to the NoC router. Under this assumption, the
composable ARA can compose more copies of virtual accelerators
compared to the dedicated ARA. Therefore, the composable ARA
can achieve better performance and saves more energy. Our current
ABB distribution strategy might be suboptimal, and we use a greedy
strategy to compose as many virtual accelerators as possible. It is
interesting to apply different strategies and compare the benefits, and
we will explore this topic in our future work.

F. Case Study for NUCA Optimization
In this subsection we conduct a case study using our visualization

tool to identify a performance bottleneck in the static non-uniform
cache access (NUCA) design. In the baseline NUCA design for LLC,
we use higher significant bits to determine which NUCA bank a given
block maps to, as shown in the upper part of Figure 11. Therefore, a

LLC Bank 0 LLC Bank 1

offsetnucaset idtagvalid

offsetset idnucatagvalid

line 0 line 1 line 2 line 3

line 0 line 1 line 2 line 3

Baseline 
NUCA

Optimized 
NUCA

Fig. 11: Comparison of baseline and optimized NUCA design.

chunk of consecutive cache lines will go to the same LLC cache bank,
and this pattern will iterate over all the LLC cache banks. Using the
visualization tool, we find that from time to time, each LLC cache
bank and its associated router become the bottleneck (shown in the
dark red color) because all cache access traffic goes to the same bank
during that certain period. It is difficult to find this bottleneck by
merely looking at the final results because all LLC cache banks and
routers will have similar utilization in aggregate, with each transiently
becoming the bottleneck as the accelerator iterates over memory. As
a result, we optimize the NUCA design for LLC by simply selecting
lower significant bits for NUCA bank selection as shown in the
lower part of Figure 11. Therefore, the consecutive cache lines go
to different LLC cache banks, making the traffic even and much less
for each cache bank during any given period. Although this may lead
to higher link utilization in the NoC, experimental results show that
it can always improve the performance. As shown in Figure 12, the
speedup can be up to 9% and the average speedup is around 3%. A
system consisting entirely of CPUs rarely exhibits the high volume
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Fig. 12: Performance speedup of NUCA optimization.

of bursty demand on memory to expose the significance of this type
of optimization, but the increased performance of accelerators results
in memory demand where small choices such as this become very
important. Note that except in this subsection, all the results are
measured using the optimized NUCA design.

G. Simulator Speed
Finally, we evaluate the simulator speed for PARADE. As shown

in Figure 13, the left Y-axis and blue bars show the simulation speed
for the baseline gem5 simulator, which is measured in simulated
kilo instructions per second (KIPS). Since gem5 simulates the whole
system, including the out-of-order pipeline, cache memory hierarchy
and NoC, the simulator speed ranges from 14 to 53 KIPS and the
average speed is around 32.5KIPS. Since we can not measure the
KIPS value for accelerator simulation (no instructions for accelera-
tors), we measure the simulator speedup of PARADE compared to
gem5, shown as the right Y-axis and the orange squares in Figure 13.
For all cases except StreamCluster, PARADE runs faster than gem5.
For StreamCluster, the software version is mainly communication
dominated where the non-overlapped communication occupies 85%
of the whole execution time. In the accelerator version, the number of
L1D/SPM accesses, LLC accesses, and memory accesses all increase,
which leads to the slight simulation time increase. Similarly, this also
leads to different simulator speedups for running different benchmarks
on PARADE. In general, this speed is good enough for design space
exploration using PARADE since it is at least faster than the state-
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of-the-art gem5 simulator.

V. RELATED WORK
We first summarize the research platforms used in some recent

representative accelerator-related work in Table III. We categorize
them use into four main types: full-system cycle-accurate simula-
tion [6], [7], [14], [27], [11], virtual prototyping [12], [21], RTL
simulation [17], [22], [20], and FPGA prototyping [16], [5], [4], [11].

TABLE III: Research platforms used in accelerator-related work.
Research Platforms Representative Related Work

Cycle-accurate
full-system simulation

ARC [6] CHARM [7] Walker [14]
Conservation Cores [27] DySER [11]

Virtual prototyping H.264 [12] Convolution Engines [21]
RTL simulation AccStore [17] Sonic Millip3De [22] PPA [20]
FPGA prototyping TSSP [16] LINQits [5] PARC [4] DySER [11]

The works most related to PARADE are ARC [6] and
CHARM [7] that use cycle-accurate full-system simulations. They
use a heavily modified Simics and GEMS [18] simulator to model the
dedicated and composable accelerator-rich architectures. Compared
to them, PARADE has some key differences. First, both ARC
and CHARM mainly focus on the design of the accelerator-rich
architecture and describe little about the simulator they are using.
In PARADE, we present more details about how to automatically
generate the dedicated or composable accelerator simulation mod-
ules, and provide a visualization tool to help architects with design



and exploration. Second, we perform more detailed analysis of the
accelerator-rich architecture using our PARADE simulator which is
not presented in either ARC or CHARM. Third, PARADE simulates
a modern X86 architecture instead of the 10+ year old UltraSPARC
architecture GEMS simulated, and does not rely on the close-sourced
Simics simulator. We plan to open source PARADE to the community
in the future to accelerate the research for accelerator-rich architec-
tures. The rest of the cycle-accurate full-system simulations lack the
capabilities PARADE provide. In addition, they use RTL instead of
high-level synthesis to design the accelerators and integrate with the
CPU component, which requires more engineering efforts for users.

Another important related work in simulation is the Aladdin [23]
simulator that provides an accurate pre-RTL, power-performance
modeling framework. However, it lacks the integration with cycle-
accurate full-system simulators that limits its use for system-level
design and exploration. In addition, Aladdin is input-dependent and
the model itself varies as input changes.

For traditional MPSoC simulation, virtual prototyping platforms
such as the Tensilica Xtensa platform [26] used in [12], [21] and
Synopsys virtual prototyping [25] provide an efficient way to sim-
ulate full-system behaviors. However, those are usually commercial
products and are not open-sourced. There are also some open-source
simulators such as McSim [8] to better model the MPSoC archi-
tecture. But the most important thing is that they are limited to SoC
simulation and are hard to apply to more general-purpose accelerator-
rich architectures that have a large number of accelerators, complex
network-on-chips, and complex coherent cache memory hierarchies.
RTL simulation [17], [22], [20] and FPGA prototyping [16], [5], [4],
[11] both suffer from limited system scale and tedious implementation
efforts.

VI. CONCLUSION AND FUTURE WORK
The power wall and utilization wall in today’s processors have

led to a focus on accelerator-rich architectures that can achieve
orders-of-magnitude performance and energy gains. In this paper
we presented the first cycle-accurate full-system simulator PARADE
for accelerator-rich architectural design and exploration. First, we
demonstrated that PARADE can automatically generate dedicated or
composable accelerator simulation modules and manage the accel-
erator resources with the global accelerator manager. Second, we
demonstrated how to use PARADE for system-level performance and
energy evaluation with a wide domain of applications. Third, we
presented the visualization tool to help architects with design space
exploration by conducting a case study of NUCA design. Finally, we
also discussed the cycle-accuracy and simulation speed of PARADE,
which is good enough for architectural design and exploration.

PARADE enables several interesting studies which we will ex-
plore in our future work. First, we plan to conduct a comprehensive
analysis of where the performance and energy gains of accelerator-
rich architectures come from. Second, we will focus more on the
memory hierarchy and optimize the memory access patterns for
accelerators. Third, we will further validate the accuracy of PARADE
against a similar FPGA prototyping. And finally, we plan to open
source PARADE to the community in the near future to facilitate the
research for accelerator-rich architectures. PARADE will be available
for download at http://vast.cs.ucla.edu/software/parade-ara-simulator.
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