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Abstract—In this paper we describe an FPGA-based platform
for high-performance and low-power simulation of neural micro-
circuits composed from integrate-and-fire (IAF) neurons. Based
on high-level synthesis, our platform uses design templates to
map hierarchies of neuron model to logic fabrics. This approach
bypasses high design complexity and enables easy optimization
and design space exploration. We demonstrate the benefits of
our platform by simulating a variety of neural microcircuits
that perform oscillatory path integration, which evidence suggests
may be a critical building block of the navigation system inside
a rodent’s brain. Experiments show that our FPGA simulation
engine for oscillatory neural microcircuits can achieve up to 39x
speedup compared to software benchmarks on commodity CPU,
and 232x energy reduction compared to embedded ARM core.

I. INTRODUCTION

Large-scale neural microcircuits are essential for a better
understanding of the mystery behind the brain, and are in-
creasingly being used to solve information processing tasks in
an expanding range of engineering and robotic applications.
Efforts on high performance computer clusters and customized
hardware have been undertaken to accelerate such simulations
(Section V). However, many applications require a combina-
tion of high performance, low power and reconfigurability.

To achieve optimal energy-efficiency, many previous ap-
proaches explored the ASIC design for neural microcircuit
constructions. However, with the fast advance of neuroscience,
neural models are evolving constantly, and the lack of flexibil-
ity and high cost impede its popularity in the neuron simulation
domain. As a result, FPGA has been favored as hardware
accelerator for neuron simulation in recent work [1]–[4], and
was demonstrated to achieve better performance and energy-
efficiency compared to CPUs and GPUs. However, although
impressive optimizations have been presented by prior work,
it is uncertain if many of the particular optimizations are
adaptable for a wider range of more complex and larger-scale
neural microcircuits. Moreover, FPGA design often require
complex knowledge of RTL coding and FPGA architecture,
which makes it difficult for experts in neuron simulation to
produce an efficient design.

With the recent advance of high-level synthesis tech-
nologies [5], it is possible to archive significantly better
programmability and adaptability, with small trade-offs in
performance and resource usage. In this paper, we present
a platform-based methodology that uses Xilinx Vivado high-
level synthesis tools [6] for constructing FPGA simulations of
neural microcircuits.

In neuron simulations, each neuron cell is modeled as
one or more compartments; neuron cells sharing the same
properties form a population; and populations of neurons
form circuits. Neuron compartments are modeled as elec-
trical circuits that represent membrane voltage, current and
conductance. A neural microcircuit is populations of neurons
connected together through spiking events that increase or
decrease membrane voltage through synaptic conductance.
Exploiting such hierarchical structure, our platform defines a
neural microcircuit with XML-based descritions, and generates
C code for high-level synthesis tools using design templates.
In our platform, neuron populations are mapped to computing
engines, in which the neuron cells are simulated with integra-
tion pipelines.

Therefore, compared to previous FPGA implementations
of neuron simulation, our platform-based methodology has the
following advantages:

• Our approach enables rapid construction of FPGA
simulation engines throughout the domain of neu-
ron simulation. Taking advantages of the hierarchical
structure shared by most spiking neuron models, our
platform can generate efficient hardware implementa-
tions with design templates and high-level synthesis
tools.

• Based on high-level description of neural microcir-
cuits, our platform enables the domain experts in
neural modeling to synthesize high-performance and
energy-efficient neuron simulation engines without
extensive knowledge of the FPGA design details.
When creating or modifying a neuron simulation, the
model configurations made by domain experts can
be automatically mapped to the corresponding FPGA
implementation.

• With our platform, the task of exploring design trade-
offs and performance optimization is also simplified.
Optimizations can be performed at each level of
the simulation without violating the semantics of the
model.

The simulation methods described in this paper are broadly
adaptable for constructing FPGA-based simulations for other
IAF model architectures. We demonstrate the benefits of our
approach by implementing a selection of neural microcircuits
for oscillatory path integration, which is believed to aid a
rodents navigation by constructing spatial maps of an envi-
ronment using a process similar to Fourier synthesis [7]–[10].
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Fig. 1. Circuit architecture. A) The model circuit consists of three sheets of grid cells, reciprocally connected with three VCO rings that receive driving inputs
that encode movement velocity signals. The terms AMPA, NMDA, GABA indicates the types of synapses through which neurons are connected. B) Each VCO
ring is composed of two circular layers of neurons, one excitatory and the other inhibitory, interconnected with one another by rotationally asymmetric weights
so that an activity bump circulates around the ring in the counterclockwise direction. C) Spike rasters show propagation of the activity bump through the VCO
layers (top two graphs) and the grid cell sheets (bottom graph) during a 3-second simulation of a rat running at constant speed along a linear path.

Combining our methodology with a high-level description of
neural microcircuits, FPGA implementation can offer much
better performance and energy-efficiency than software-based
implementations, without sacrificing much on flexibility and
productivity.

This paper is organized as follows. In Section II we briefly
introduce the hierarchies of neural microcircuits using the
example of oscillatory neural microcircuit. We then present
our platform-based methodology of constructing neural mi-
crocircuit simulation engines in Section III. We demonstrate
the performance of our platform using a selection of neural
microcircuit simulations in Section IV. Finally, we provide
discussions of related work in Section V, and we conclude
our paper in Section VI.

II. NEURAL MICROCIRCUIT MODEL

In this section we discuss the general modeling method
used in neural microcircuits simulation with the example of
circuits that conduct oscillatory path integration. Most animals
(including humans) can keep track of their own location as they
navigate through a familiar environment, even in darkness or
when blindfolded. This ability depends upon path integration,
the process of computing position by integrating movement
velocity over time [11]–[14]. It has been hypothesized that
these neurons derive their spatial tuning properties from neural
oscillators with frequencies that are modulated by the speed
and direction of an animal’s movements through space [7]–[9],
[15].

We introduce the model by breaking the microcircuit into
a hierarchical structure: compartments, cells, populations and
circuits. The higher-level objects are composed from the lower-
level components. An example architecture of the oscillatory
microcircuit is illustrated in Fig. 1, which implements a spiking
network for path integration by neural oscillators, as proposed
by prior theoretical models [7]–[10]. The circuit module is
made up of two different circuits called VCO rings and
grid sheets. Each circuit is composed from populations of
single-compartment IAF neurons. In the remaining part of this
section, we discuss each level of the neuron model in details.

A. Compartment

A neuron compartment is the basic unit of neuron simula-
tion, which models a section of a neuron cell as an electrical
circuit illustrated in Fig. 2. In the circuit, a series of synaptic
channels modeled by a reversal potential E and conductances
g are connected in parallel with the membrane voltage Vm
and the membrane capacitance Cm. The electrical circuit is
simulated by numerical integration with the forward Euler
method.

Cm
Vm

…g

E

G

I

…

Fig. 2. Circuit model of IAF neuron.

The synaptic channels receive the spiking stimulus from
pre-synaptic neurons that changes their conductances. As a
result, the membrane voltage will increase or decrease based
on the activation of synaptic channel and the driving force.
If a synapse decreases the membrane voltage, it is called an
inhibitory neuron, while if the neuron increases the membrane
voltage, it is called an excitatory neuron.

The synaptic conductances obey first-order kinetics, and are
updated at each time step by numerical integration as follows:

g(t+ 1) = g(t)− 1

τα
g(t) +Aδ(t) (1)

where g(t) is the channel conductance at time step t, and the
decay of conductance is modeled as time constant τα. The
strength for each type of synapse is scaled by A, and the
spiking event is modeled with a delta function where δ(t) 6= 0
when a pre-synaptic spike is fired at time step t.

Eq. 1 describes the basic model for AMPA and GABA
synapses. The kinetics model for NMDA synapses is slightly
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different, but it is mapped to our platform in the same way.
Therefore, we do not elaborate this level of detail in this paper.

B. Cell

A neuron cell contains one or more compartments. In
the case of the oscillatory neural microcircuit, all cells are
modeled with single-compartment.

In the IAF neuron model, a neuron spikes when Vm reaches
a certain threshold Vthresh; after spiking, Vm is held at a fixed
reset potential, Vreset for a certain period, which is called the
post-spike refractory period. The refractory period is updated
each time step by:

R(t+ 1) =

{
Trefract, if Vm(t) > Vthresh
R(t)− 1, otherwise

(2)

where Vthresh is the spike threshold and Trefract is the number
of the time steps in the refractory period.

After the refractory period, Vm is updated by numeric
integration using the Forward Euler method:

Vm(t+ 1) = Vm(t) + λ(Iin(t)− Iout(t)) (3)

where t is the simulation time step, Iin and Iout are the
total inward (excitatory) and outward (inhibitory) membrane
currents. λ here is the constant value that models the membrane
capacitance Cm and time step dt.

The membrane current Iin and Iout is the sum of currents i
of each channel, which is computed as the product of a channel
conductance g, and driving force D.

i(t) = D(t) ∗ g(t) (4)

The driving forces are computed based on the membrane
voltages and the reversal potentials of each channel.

C. Population

A neuron population is a group of neurons that share the
same cell model and regular structured connections. In neuron
simulations, having such an intermediate layer is important for
efficiency.

As established in the previous section, for each synapse
there will be a corresponding channel in the post-synaptic
neuron, with a reversal potential and conductance. It is very
costly to keep track of all these state variables, especially
when neurons often have a large fan-in. For example, in
the oscillatory path integration circuit a grid cell has about
600 synapses. However, when a group of neurons share the
same type of synaptic channel, it is possible to combine these
separate state variables into one.

When neurons in a population are connected to all neu-
rons in another population, the synaptic channels for those
connections in a post-synaptic neuron can be represented as a
population conductance G(t), which is the weighted sum over
corresponding conductances.

Gi(t) =
∑
j

ωi,j ∗ gi,j(t) (5)

where i indexes the neuron in the post-synaptic population,
and j indexes neurons in the pre-synaptic population. ωi,j is

the synaptic weight coefficient representing the strength of the
connection between neuron i and j.

With the aggregation of synaptic channels, the amount of
computation to simulate a population can also be reduced
because only spiking neurons will change the activities of con-
nected neurons. This observation can be made from combining
Eq. 1 with Eq. 5.

Gi(t+ 1) =
∑
j

ωi,j ∗ (gi,j(t)−
1

τα
gi,j(t) +Aδj(t))

= Gi(t)−
1

τα
Gi(t) +

∑
k

A ∗ ωi,k (6)

The first two terms of Eq. 6 represent a decay of the con-
ductance, while the third term represents a spiking stimulus,
where

∑
k A ∗ ωi,k is the summation over all spiked neurons

in the pre-synaptic population at time step t.

The weights (ωi,j) can also be aggregated as weight vectors
of predefined values. In the case of the oscillatory neural
microcircuits, the weight vector is defined by a Gaussian
distribution [16].

ωi,j =W (i− j) = C ∗ exp(cos(θ ∗ (i− j)− θ0)
σ2

) (7)

where C is a normalizing factor, and θ ∗ (i − j) represents
the phase difference between neuron i and j in respect to the
VCO ring structure.

As will be shown in Section III, our platform exploits all
these properties of neuron populations to generate efficient
simulation engines.

D. Circuit

A neural circuit is a collection of one or more neuron
populations that can produce particular spiking patterns. Cre-
ating neuron populations and connecting them in a certain
way to create circuits that generate required spiking patterns is
the basic task of neuron modelers. Therefore, for a hardware
accelerator platform performing neuron simulation, it is im-
portant to provide flexibility to both the neuron diversity and
connectivity.

An example model of the oscillatory neural microcircuits
is illustrated in Fig. 1. The whole module is connected by
two types of circuits: VCO rings and grid sheets. Each VCO
ring includes two populations of neurons: inhibitory neurons
(inh) and excitatory neurons (exc). These two populations of
neurons are interconnected with each other, and the inhibitory
layer is reciprocally connected to itself. The excitatory popula-
tion also receives external excitatory spike input from velocity
cells (ext). The connections from inhibitory to excitatory cells
are asymmetric, so that the neurons in the VCO ring fire
sequentially as a ‘bump’ of spiking activity circulates around
the ring at a certain frequency [8], [10], [16]. Each grid sheet
includes one population of grid cells (grid) that connects to
three VCO rings by receiving excitatory and inhibitory spikes
from the neurons at different angular positions in those rings.
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Fig. 3. The mapping of the neural microcircuit to our platform. The left
side of the figure illustrates the hierarchies of the neural microcircuit and the
examples of each level in the oscillatory model. The right side illustrates the
corresponding implementation in our platform-based approach.

III. PLATFORM-BASED FPGA IMPLEMENTATION

In this section we present our platform-based FPGA sim-
ulation engine design that maps different levels of neuron
models to hardware implementations. We first describe the
mapping of different levels of neural microcircuits in detail.
Then, with the example of oscillatory path integration, we
discuss the specific optimizations that are enabled by our
platform.

Fig. 3 illustrates the mapping between a neural microcircuit
and the FPGA implementation with our platform. The mapping
is described in a high-level XML file, in which domain experts
specify the types of synaptic channels in each cell, the spiking
neuron model, the populations, and the synaptic connections
between the populations. Then the XML description is used to
generate C code specified to FPGA implementation, and the C
code will be synthesized into RTL using high-level synthesis
tools. Performance tuning parameters such as loop unrolling
factors can be expressed on the high-level XML description.
For FPGA design experts, design optimizations can also be
explored on the C level.

A. Mapping Neuron Compartments and Cells

In our platform, neuron compartments are modeled with
a spiking model and a synapse model. The spiking model
describes the integration of membrane voltages (Vm) of each
compartment. A spiking mechanism such as the IAF model is
also defined in the cell model in our platform. The synapse
model describes the integration of synaptic conductances G.
Both multiple-compartment cells and single-compartment cells
can be modeled using the same electrical circuit model in Fig.
2.

The following XML code is an example of describing a
single-compartment neuron cell with the basic spiking model.
Based on the definition of the cell type, which in this piece
of code is IAF, our platform generates integration operations
based on the biological model described by Eq. 2 and Eq.
3 from pre-defined templates. The property tags vreset,
vthresh and trefract configure Vreset, Vthresh and
Trefract respectively. This description in the example assumes
that “iafreset”, “iafthresh” and “rstep exc” will be defined by
the user after the C code for high-level synthesis is generated,
which is the same goes for the examples afterwards.

<cell type=’IAF’>
<vreset>iafreset</vreset>
<vthresh>iafthresh</vthresh>
<trefract>rstep_exc</trefrac>

</cell>

The synaptic channels in each compartment are modeled
by describing a syapse on the population level. The code
below shows the description of a GABA synapse called
inhexc. By defining a synapse, our platform creates a synaptic
conductance in the post-synaptic population, and a connec-
tion between the pre-synaptic and post-synaptic population.
Our platform supports the basic types of synapses (AMPA,
NMDA, GABA) by having templates for the specific types of
integration operations used to model these synapses.

<synapse name=’inhexc’>
<pre>inh</pre>
<type E=’egaba’ A=’4096’ tau=’tau_gaba’>GABA</type>
<weights>FUNC</weights>

</synapse>

In our platform, we define the synapses in the post-synaptic
population, while the tag <pre> in the synapse description
indicates the pre-synaptic population. Tag <type> indicates
the specific update routine of this synaptic channel, and
<weights> specifies the type of weight models that represent
the strength of the synapse. This will be elaborated in the next
section.

B. Mapping Neuron Populations

As described in Section II-C, the definition of neuron popu-
lations enables a variety of simplifications for simulation. Our
platform exploits these simplifications by mapping a neuron
population to a computation engine that contains two update
pipelines: a conductance update pipeline and a membrane
voltage update pipeline. In the pipelines, state variables of
each neuron are integrated iteratively. An outline design of
the computing engine structure is illustrated in Fig. 4.

Conductance
Decay Pipeline Membrane Voltage

Update Pipeline

V

R

ω

GConductance 
Spiking Pipeline

Spiking 
Events

Spiking 
Events

G

Fig. 4. Template for computing engine of a neuron population

The conductance update pipeline integrates synaptic con-
ductances based on the synapse model described in Section
III-A. The pipeline can be divided into two stages—a decay
stage that is irrelevant to the spiking input, and a spiking stage
that is only activated when there is a spike input. Such a
division follows the description in Eq. 6, where the spiking
stage calculates the weighted sum over stimulus generated
from the spiking neurons.

The weights ωi,j in Eq. 6 are modeled as weight vectors
between two populations. Our platform supports four kinds of
weight vectors:
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1) Constant weights, where all ωi,j are constant for post-
synaptic neuron i

2) Direct functional weight mapping, where the weight
values depend on the simple distance between the the
two neurons i and j

ωi,j = fω(i− j) (8)

3) Indirect functional weight mapping, where the weight
values depend on the distance of neuron i and j that
is defined in a distance vector

ωi,j = fω(fdist(i, j)) (9)

4) Direct mapping, where a separate weight is defined
for each pair of neurons.

The following code snippet shows an example of the
description of a population that is named as exc and has a
size of 120 neurons.

<population name=’exc’ size=’120’>
<cell type=’IAF’>

...
</cell>
<synapse name=’inhexc’>

...
</synapse>
<synapse name=’ext’>

...
</synapse>

</population>

In the computing engine, neuron local states are stored in
memory blocks (BRAM of FPGA), and by default the two
update pipelines integrate each neuron sequentially. For all the
update pipelines in the template, the Initiation Interval (II)
is optimized to 1, so that optimal throughput is achieved. To
further improve performance, our platform also supports un-
rolling of the pipelines, which means neurons in a population
can be updated in parallel by a certain factor. The developer
can specify such factor in the <population> tag, and
our platform will partition the corresponding memory blocks
automatically based on the specification. The loop pipelining
and unrolling is implemented by using pragmas in the Xilinx
Vivado HLS tool.

C. Mapping Neural Microcircuits

In the previous subsection we introduced the computing
engine and its basic structure. Here, we focus on the mapping
between system-level composition of neural microcircuits and
the interconnection of computing engines in our platform.

<circuit name=’vcoring’ num_popl=’2’>
<population name=’exc’ size=’120’>

...
</population>
<population name=’inh’ size=’120’>

...
</population>

</circuit>

The code snippet above shows an example of the cir-
cuit called vcoring, containing two populations: exc and
inh. With the circuit structure described in the XML file,
our platform generates C code for each computing engine.

The connections between pre-synaptic populations and post-
synaptic populations are defined by each synapse description,
with which our platform generates the system-level intercon-
nections between the computing engines. The platform also
generates a top module that includes the necessary interfaces.

On the system level, our platform simulate neuron pop-
ulations synchronously. That is, all computing engines syn-
chronize at each time step. In each time step, all computing
engines perform the conductance update first, and then the
voltage update pipeline can integrate the membrane voltages
and generate spiking events. After all spiking events of each
population have been generated, the simulation proceeds to the
next time step so that the spiking events can be used in the
conductance update pipelines. This approach is based on the
Forward Euler integration algorithm used by our simulation. In
this paper, we do not explore other integration methods, since
the Forward Euler is one of the simplest and most popular
algorithm used by neural modelers.

D. Case Study: Oscillatory Neural Microcircuits

In this section we discuss the implementation of the
oscillatory neural microcircuit based on our platform design
as case study. We start from the description of a single
VCO ring, which is one of the components in the oscillatory
neural microcircuit. Following the description in Section II-D,
the inh and exc populations are connected by NMDA and
GABA synapses, and the weights are modeled as Gaussian
distribution in Eq. 7. Therefore, we use the direct functional
mapping to describe the weight vectors in our platform. The
exc population also receives external excitatory signals as a
Poisson spike train through AMPA synapses, which is modeled
with a random number generator in the conductance update
pipeline, and the weight vector type is constant. The XML
description of a VCO ring circuit based on our platform is
already introduced as examples previously in this section.

The full grid module of the oscillatory neural microcircuit
is composed of two types of circuits: VCO rings and grid
sheets. Besides the exc and inh populations that form the VCO
ring, there is another type of population called grid that forms
the grid sheets. The circuit contains nine populations in total.
To describe the circuit in our platform, the user just need to
define the nine populations with the basic cell type and the
synapses describing the connections. The IAF model used in
all populations and the three types of synapses (AMPA, GABA
and NMDA) are supported in our platform by templates. We
use indirect functional mapping to model the weight vectors
for synapses between neurons in the VCO rings and neurons
in the grid sheets.

As described in Section III-B, performance of the sim-
ulation engine can be improved by defining unrolling fac-
tors for each population. For the VCO ring, the choice is
straightforward because the two populations have the same
size. Therefore, the performance will increase by unrolling
the two populations with the same factor. We presents the
experimental results for one VCO ring in Section IV-A. For
the full grid module, on the other hand, design choices become
more complicated. Based on the performance bottleneck of the
implementation, decisions of unrolling which population have
different impacts on the performance. We show the discussion
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on the design space exploration and optimization in Section
IV-B.

We also briefly discuss the scalability of our platform with
the calculation of the bandwidth requirement of the oscillatory
neural model in this section. As illustrated in Figure 1, each
VCO ring is connected to two adjacent grid sheets with
excitatory links, and to the other grid sheet with an inhibitory
synaptic link. The oscillatory neural microcircuit is scaled up
by adding the VCO ring and grid sheet in pairs. Because the
role of the grid sheets is to detect synchrony between two
VCO rings, the number of total connections grows linearly
to the number of rings and grid sheets. Assuming 32 bits
are used to index the location of each fired neuron, which is
more than enough for most neural microcircuits, the bandwidth
requirement for each link between computing engines is:

B = 4N ∗ α/ts (10)

where B is the bandwidth in Byte/second, N is the number
of neurons mapped to the computing engine, α stands for the
firing rate, and ts is the simulation time step. Based on the
equation, the roughly estimated bandwidth requirement for
a single link is 2MB/s with firing rate of 10%, which is a
loose upper bound for most neural circuits. The aggregated
bandwidth for the entire microcircuit is around 30MB/s.

In our platform-based approach, the performance of each
computing engine depends on the number of neurons in the
simulated population and the firing rate of neurons in its
connected computing engines. The number of connections
between two populations does not grow as the model scales
up. So the overall system performance is roughly proportional
to the number of neurons in the system. Therefore, the perfor-
mance is scalable by adding computing engines to the system
such that the number of neurons mapped to each computing
engine remains the same. Therefore, When the computing
engines need to be mapped to multiple chips, the inter-chip
connection bandwidth should not be a performance bottleneck.

IV. EXPERIMENTAL RESULTS

In this section we demonstrate the performance of our
FPGA simulation engine for neural circuits that perform os-
cillatory path integration. The results show that our platform-
based approach is capable of simulating a range of different
neuron models with good performance. The FPGA implemen-
tation based on our platform achieves up to 39x and 264x
speedup compared to the Intel CPU and embedded ARM A9
processor respectively. We also analyze the energy-efficiency
of our platform in comparison with CPU and ARM, as well
as a selection of existing implementations. Compared to pure
software implementation on an embedded ARM core, our
platform achieves 232x energy reduction.

The CPU benchmark is the original sequential code used in
oscillatory path integrator simulation, and was measured on an
Intel Xeon L5408 CPU. The embedded CPU experiments were
used on an ARM A9 core in a Xilinx Zynq-7045 SoC chip.
The FPGA platforms for our hardware simulation evaluation is
the Zynq-7045 (xc7z045ffg900-2) FPGA running at 100MHz
clock.

A. Case Study: One VCO ring

We first present the performance evaluation of our comput-
ing engine design with the simulation of a single VCO ring.
In the experiments, each of the two neuron populations (inh
and exc) consists of 120 IAF neurons. In total, one VCO ring
has 240 IAF neurons and 43,200 synapses.

In Table I, the performance of simulation engines generated
by our platform with different unrolling factors is presented.
The symbol “[i:j]” indicates the unrolling factors for the
computing engines for inh and exc respectively. For instance,
“FPGA [4:4]” represents the implementation in which the
inh and exc computing engines are unrolled for four times.
As described in Section III-B, the unrolling factor can be
defined in each population. Since the two populations of
the VCO ring has the same amount of neurons, we always
unroll the two population with the same factor. The CPU
and ARM performance is measured as single-thread software
implementations.

TABLE I. PERFORMANCE OF ONE-SECOND SIMULATION OF A SINGLE
VCO RING

Platform Time Speedup
CPU 0.65s 1
ARM 6.65s 0.1x

FPGA [1:1] 0.137s 4.7x
FPGA [2:2] 0.084s 7.7x
FPGA [4:4] 0.057s 11x

Table II shows the trade-off between the resource usage
and performance for designs with different unrolling factors.

TABLE II. RESOURCE USAGE OF FPGA IMPLEMENTATIONS OF ONE
VCO RING

BRAM FF LUT Speedup
FPGA [1:1] 18 4.9k 5.3k 4.7x
FPGA [2:2] 40 11.7k 12.5k 7.7x
FPGA [4:4] 78 16.2k 18.5k 11x

B. Case Study: Oscillatory Grid Module

In this section we discuss the performance of the grid
module simulation. The experiments are conducted with the
configuration that each population in the VCO ring contains
108 neurons, and each grid sheet contains 16 neurons. In
total, the grid module contains 756 neurons interconnected by
174,960 synapses.

Because of the heterogeneity of the three populations,
design choices can be made on unrolling different computing
engines. Intuitively, computing engines that simulate the grid
population is not the performance bottleneck, since it has
far less neurons than the populations in the VCO rings. We
discuss the decisions on optimizing performance in Table III.
The symbol “[i:j:k]” for FPGA implementation indicates the
unrolling factors for the computing engines for inh, exc and
grid respectively. For instance, “FPGA [4:4:2]” represents the
design in which the computing engines for inh and exc are
unrolled with a factor of 4, while the computing engines for
grid are unrolled with a factor of 2.

The results in Table III shows that the performance in-
creases with larger unrolling factors of the populations in the
VCO rings. However, the performance increase becomes small
when reaching “FPGA [4:4:1]”. That is because the after the
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TABLE III. PERFORMANCE OF ONE-SECOND-SIMULATION OF THE
GRID MODULE

Platform Time Speedup
CPU 3.69s 1
ARM 24.83s 0.15x

FPGA [1:1:1] 0.142s 26x
FPGA [2:2:1] 0.105s 35x
FPGA [4:4:1] 0.101s 36.5x
FPGA [4:4:2] 0.094s 39x

simulation of the VCO rings become faster, the grids becomes
the performance bottleneck. Therefore, in “FPGA [4:4:2]” the
performace increases when the grid is unrolled for two times.

TABLE IV. RESOURCE USAGE OF FPGA IMPLEMENTATIONS OF THE
GRID MODULE

BRAM FF LUT Speedup
FPGA [1:1:1] 57 15.4k 17.1k 26x
FPGA [2:2:1] 86 37.7k 35.8k 35x
FPGA [4:4:1] 145 74.9k 70.2k 36.5x
FPGA [4:4:2] 148 78.0k 73.0k 39x

In Table IV we present the resource usage for different
implementations. The resource almost doubles when the VCO
rings are being unrolled, since the computing engines for inh
and exc are considerably larger than grid. Design choices can
be made based on the trade-offs between performance and
resource.

C. Energy Consumption Estimation

In this section we compare the energy performance of our
FPGA simulation engine with other established implementa-
tions. First, we define the metric that will be used to evaluate
energy consumption. Since the existing work implements dif-
ferent neuron models, it is unfair to compare the overall power
of the simulation. One plausible metric can be the unit energy
consumption for a single spiking. Such a metric can be found
in [17], [18].

We first look at the energy consumption of the high-
performance clusters. IBM did not provide the energy statistic
for their BlueGene simulator [19]. Nevertheless, [18] provides
an estimate that it “consumes 655kW to simulate 1.6 · 109
neurons at the speed of 643 second per Hz.” So the energy
per spiking-event is 655 ·103∗643/(1.6 ·109) = 263.6mJ/s.e.
The SpiNNaker system, which uses a multicore ARM system
with customized interconnection, consumes 43nJ/s.e. [18].
On the other end, IBM’s crossbar-based ASIC implementation
consumes 45pJ/s.e. [17].

Our energy per spiking-event can be derived using the
overall power consumed to simulate one second of neuron
behavior and the average spike-rate per second. The implemen-
tation we used in this experiment is the grid module design
“FPGA [4:4:2]”. The spike-rate is measured from simulation,
which is about 120k spikes for the entire grid module in a
one-second simulation. The energy consumption of CPU is
estimated by operating power (40W for Xeon L5408, 10W for
one core) times the simulation time. The power of ARM and
FPGA implementation is recorded using the Texas Instrument
Fusion Technology, which monitors real-time voltage and
current data using the power buses on our Xilinx ZC706 board.
Table V shows the energy per spiking-event statistics for the
implementation of the Oscillatory Grid Module.

TABLE V. ENERGY ESTIMATION OF SIMULATING GRID MODULE ON
DIFFERENT PLATFORMS

Platform Total Energy Energy per Spiking-event
CPU 36.9J 0.308mJ/s.e.
ARM 8.03J 66.9µJ/s.e.
FPGA 34.5mJ 0.288µJ/s.e.

Since the ARM core in the Zynq chip does not turn off
when idle, the energy measurement for FPGA includes the
energy cost of the ARM core as well. However, with the
considerable performance improvement of hardware acceler-
ation, our platform-based implementation still achieves 232x
less energy than the embedded solution based on ARM.

V. RELATED WORK

Neuron models, such as the integration-and-fire (IAF)
model [20] and Izhikevich model [21] have been widely
used for neuron simulation. These models often convey more
biologically realistic information; thus the computation com-
plexity is considerably large. Consequently, many systems
use high-performance computer clusters to cope with this
computing demand [22], [23]. One of the largest-scale projects,
IBM’s SyNAPSE, can offer the computing power to simulate
as many as 109 neurons [19]. Yet its high energy budget and
availability is limited for most neuroscience research facilities.

As a result, neuron simulation has emerged as a popular
domain for hardware acceleration. GPU acceleration has been
explored by many previous work [24]–[26]. Although GPU
offers great floating point computing power with massive
parallelism, it is not an ideal architecture for neuron sim-
ulation. As pointed out in [25], for most spiking neuron
models, the ratio between floating-point operation and memory
operation is very small. GPU’s advantages become obvious
only when using very complex neuron models. Since each
neuron connects to many of its neighboring neurons, the dense
communication between neurons is the biggest challenge for
hardware implementation. Existing general-purposed multicore
systems are also not well designed for this domain.

Recognizing this challenge, many researchers began to
extract further performance and energy-efficiency improve-
ment through customization. The SpiNNaker project combines
a general-purposed multicore ARM system with customized
interconnection, and offers great improvement in energy effi-
ciency [27], [28] compared to large-scale HPC implementation.
However, using general-purposed cores as computing units
for neuron simulation is still not efficient, especially when
neuron simulation often consists of very simple operations with
limited precision.

Customized hardware can offer even higher energy-
efficiency. One approach is to use a fully customized ASIC
design [17], [29]. IBM’s TrueNorth architecture [29] proposes
a crossbar-based implementation on ASIC and a corresponding
scalable simulator. Although they provide some impressive
energy results from their ASIC chip and large-scale validation
from their simulator, one can argue that the crossbar design
is still limited since neurons often have a very large range of
fan-in and fan-out numbers.
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VI. CONCLUSION

In this work we propose a platform-based methodology for
the domain of neuron simulation. We discuss the hierarchical
structure of neural microcircuits and demonstrate the mapping
to digital logic using a high-level synthesis approach. Using the
neural microcircuits related to oscillatory path integration as
a case study, we show that our platform is significantly faster
and more energy-efficient than general-purposed processors.
Our platform enables domain experts to create efficient and
scalable FPGA simulation engines without in-depth knowl-
edge of hardware design. For hardware design experts, our
platform also provides opportunities to conduct design space
exploration with high-level synthesis tools to further optimize
performance.

In the future, we are going to explore a broader design
space of FPGA neuron simulation. We are especially going
to focus on efficient and scalable customized network archi-
tectures, since this is one of the biggest challenges to the
design of large-scale hardware simulation engine for neural
microcircuits. We will also further demonstrate the benefits
of our platform by designing a multi-FPGA oscillatory path
integrator for larger-scale simulation, and for navigation in
robotic systems. Ultimately, we believe that with our platform,
neuroscientists can synthesize efficient simulation engines on
FPGA, and FPGA can become one of the most favorable
architectures for neuron simulation.
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