
FPGA Implementation of EM Algorithm for 3D CT Reconstruction

Young-kyu Choi, Jason Cong, and Di Wu
Computer Science Department

University of California, Los Angeles
Los Angeles, CA, 90095, USA
{ykchoi, cong, allwu}@cs.ucla.edu

Abstract—Although the expectation maximization (EM)-
based 3D computed tomography (CT) reconstruction algorithm
lowers radiation exposure, its long execution time hinders
practical usage. To accelerate this process, we introduce a novel
external memory bandwidth reduction strategy by reusing
both the sinogram and the voxel intensity. Also, a customized
computing engine based on field-programmable gate array
(FPGA) is presented to increase the effective memory band-
width. Experiments on actual patient data show that 85X
speedup can be achieved over single-threaded CPU.

Keywords-computed tomography; customized architecture;
data reuse; field-programmable gate array; ray tracing

I. INTRODUCTION

Computed tomography (CT) is a frequently used method-
ology that can produce 3D images of patients. However,
there are serious concerns regarding the danger of high
radiation exposure from CT scans. This has motivated the
development of low-dose compressive sensing-based CT
algorithms. Instead of traditional algorithms such as filtered
back projection, iterative algorithms such as expectation
maximization (EM) [4] are used to obtain a similar image
quality with less radiation exposure.

However, lower radiation exposure is achieved at the cost
of longer computation time. The problem is due to the
iterative nature of EM. For example, literature reports 14
minutes and 1.52 hours of CPU computation to process
128×128×64 and 736×64×500 pixels of projection, respec-
tively [2] [3]. This becomes more problematic with actual
patient images, which require larger input data for accurate
measurement. Our experiment, which uses 672×72×15022
pixels of projection, requires 54 hours of computation on
Intel Xeon 5138 CPU. Such long latency hinders practical
usage of EM for time-critical emergencies.

Although using pipelining or parallelization techniques
with GPU or FPGA can accelerate this process, a bottleneck
is often reached where adding more computing elements no
longer improves the performance [2]. The reason is that CT
is a memory-bounded application where the performance is
dominated by the system memory bandwidth [2]. As a result,
previous literature concentrated on reducing the memory
accesses [2] [3] [6]. However, the improvement was often
limited. The potential for large amounts of speedup can be
found in the repetitive access pattern of EM. For example,
each voxel intensity is accessed 1,004 times per iteration,

Figure 1. CT scan trajectory

and each sinogram is accessed 831 times per iteration.
This suggests that reusing the previously fetched data can
potentially reduce a large amount of memory accesses.

The key contribution of this paper is that we propose an
efficient method of reusing the data when performing EM for
3D CT reconstruction. We present a novel way of reusing
both sinogram and intensity and increasing the reuse rate
by 55X compared to the previous approach. Moreover, a
customized FPGA architecture that efficiently supports the
proposed algorithm and a strategy to increase the effective
memory bandwidth is described in this paper.

II. BACKGROUND

The objective of 3D CT reconstruction is to recover the
object intensity from the CT scan measurements. A typical
geometry of a CT scan is shown in Figure 1. When the
source emits radiation, it penetrates the patient’s body and
is captured by an array of detector channels and detector
rows. The source and the detector array proceed in a helical
fashion, where the pair moves in a circular direction in the
x-y plane and a lateral direction in the z plane.

EM is an iterative method of solving the above problem by
progressively refining the object by finding the most likely
intensity, given CT scan observation. From the forward
projection, the projection of the currently estimated image,
called sinogram, is obtained. This projection is compared to
the observation of the CT scan. Based on the comparison,
the previous estimate of the object intensity is updated
using backward projection. These operations are repeatedly
performed until the estimated object image converges. A
more detailed explanation can be found in [2].

The problem of finding how much each voxel of an object
will be projected on to the detector array of CT equipment
can be solved using an efficient ray tracing method [7]. This
algorithm exploits the repetitive nature to obtain the cross-
sectional length of the currently traversed voxel and the



(a) (b) (c)

Figure 2. Various memory bandwidth reduction strategies: (a) ray-based,
(b) voxel-based, (c) proposed

position of the next traversed voxel. With this information,
the forward projection (1) and the backward projection (2)
computation can be described as:

(new sinogram) = Σ(voxel intensity) ∗ (ray length) (1)
(updated voxel intensity) = Σ(ray sinogram) ∗ (ray length) (2)

The target platform is the Convey HC-1ex, which includes
four Xilinx Virtex 6 LX760 FPGAs. This platform has been
chosen because of the high coprocessor memory bandwidth
(80GB/s) and efficient scatter-gather memory access capa-
bility [1] of the coprocessor memory controller.

III. MEMORY ACCESS REDUCTION BY DATA REUSE

A. Reuse Approach

1) Ray-Based Reuse: When each ray passes through
multiple voxels, as illustrated in Figure 2(a), the intermediate
accumulated sinogram (forward projection) or sinogram for
updating (backward projection) can be stored as a local vari-
able and referenced without accessing the external storage.
This strategy will be refered to as ray-based reuse. For
our input dataset, each ray accesses an average of 1,004
voxels, which corresponds to a 1,004X reduction in memory
transaction. [2] benefits from this type of reuse.

2) Voxel-Based Reuse: To further reduce the external
memory access, we propose also reusing the intensity of the
voxels – a strategy we call voxel-based reuse. After storing
the intensity of a voxel in a local memory, this value is
repeatedly updated with the sinogram of all rays that pass
through that voxel. This is illustrated in Figure 2(b).

The voxel-based reuse rate is defined as the number of
ray accesses per voxel. For analysis, the trajectory of the
CT scan should be taken into account. The rays in the 672
channels × 16 detector rows access each voxel only 2.3
times on average. The reason for such a low reuse rate is that
radiation emission spreads out in a cone shape, and very few
rays access the same voxel far away from the source. On the
other hand, there is almost a linear increase in the reuse rate
across adjacent projections (2.9 → 5.7 → 11.4). The reason
for this is that although there is a circular movement in a
source-detector pair, the rays of nearby projections intersect
almost identical x-y planes. The difference is in the angle
of penetration, which does not severely change the actual
voxels through which the rays pass. The voxel-based reuse
rate among all projections is 831, which is adequate for large
performance improvement.

However, the challenge in implementing voxel-based
reuse is that there is no known efficient algorithm that can,
on the fly, compute the list of rays that pass through a
particular voxel. As a result, a huge list of rays that pass
through each voxel must be read, which defeats the purpose
of bandwidth reduction. Also, employing the voxel-based
reuse scheme alone results in a loss of sinogram reuse.

3) Tiled Hybrid Reuse: We propose a hybrid approach,
illustrated in Figure 2(c), that takes advantage of these two
opposite reuse approaches. Similar to the voxel-based reuse
case, we store voxel intensity in a local memory. To address
the problem of having a huge list of rays for each voxel, we
first propose storing only the range of rays that pass through
them (e.g., highest/lowest detector channel #, highest/lowest
row #). The reason for this is that the object of interest in a
CT scan is mostly continuous and occupies a range of space,
rather than being spread out randomly. Second, we propose
storing a tile of nearby voxels in the internal memory. Since
nearby voxels share the list of rays that pass through them,
we can take advantage of the tendency for nearby voxels
to access a similar set of sinograms. These two techniques
reduce the overhead of storing the list of rays from 302GB
to 58MB for a 64×64×1 tile.

To further decrease the memory transaction, the tiled ray-
based reuse technique is also employed. That is, we perform
ray tracing inside a tile. The intermediate sinogram variable
is stored in flip-flops while traversing in a ray. Note that
compared to the original ray-based reuse scheme, the reuse
rate is decreased because many tiles need to read a single
sinogram value from DRAM.

Table I
COMPARISON OF DRAM DATA TRANSACTION (PER ITERATION)

Ray Voxel Hybrid Reuse
Reuse Reuse (64×64×1 tile)

DRAM DRAM DRAM BRAM

Forward Intensity 324 0.39 0.39 324
Sinogram 0.65 649 11.23 0

Backward Intensity 649 0.39 0.39 649
Sinogram 0.65 324 5.62 0

Total Transfer (GB) 974 974 17.6 973
Available BW (GB/s) 80 80 80 204

4) Comparison: The DRAM data transaction compar-
isons among ray-based, voxel-based, and hybrid reuse
schemes are shown in Table I. The ray-based reuse scheme
requires large off-chip memory bandwidth to transfer in-
tensity, whereas the voxel-based scheme requires a large
sinogram transaction. Since voxels in a tile are reused, the
hybrid reuse scheme transfers each voxel only once, similar
to the voxel-based reuse scheme. Moreover, the sinogram is
fetched approximately 17.4 times for a 64×64×1 tile size.
Considering the combined value of sinogram and intensity,
there is a 55.3X reduction in external memory access.

Table I also shows that there is little difference between
the three reuse schemes for a combined amount of internal



Figure 3. The architecture of the proposed system

and external memory access. However, we can still expect a
high performance increase in the proposed scheme, because
the customized architecture, which will be explained in
Section IV, has a much higher internal memory throughput
than the external memory.

B. Tile Shape and Size Exploration

The reuse rate presented in the previous section assumes
that an infinte amount of internal memory is available. But
in reality, there is only a limited amount. Thus, for practical
implementation, two parameters need to be determined: tile
shape and tile size.

Since the scan proceeds in a helical fashion, it is likely
that adjacent rays will access similar (x,y) voxels with a
rotated ray vector. Therefore, it is advantageous to use a
flat surface tile rather than a cube tile to maximize reuse
between adjacent rays. A tile size of 64×64×1 was selected
to fit the amount of internal memory available (12.8MB) in
the Convey HC-1ex platform. This tile size reduces the total
data transfer from 974GB to 17.6GB.

IV. ARCHITECTURE

The proposed architecture is shown in Figure 3. It is
divided into three parts: ray parameter generator, ray tracing
processing element (PE), and the external memory con-
troller.

The ray parameter generator provides following param-
eters to PEs : ray index, ray vector, entry point, and the
sinogram value. It also provides the coordinates of the
processed tile. The list of tiles and the range of rays are
read from the external memory.

The ray tracing processing element (PE) is responsible
for accumulating (forward projection) or updating (backward
projection) the intensity of voxels. Since both operations are
based on the ray tracing algorithm, they are combined into
one PE to save logic resources.

Since the target application is bounded by the memory
bandwidth, we propose tightly coupling the ray tracing
computation unit with the internal BRAM. As a result, every
PE is guaranteed to have a one-cycle access to the memory.
Moreover, the effective bandwidth increases from 80 GB/s
to 284 GB/s due to the added internal memory bandwidth.

On average, 95 tiles are mapped to a single PE. Since the
workload varies from tile to tile, a dynamic work allocator
is used to distribute tiles to available PEs.

The external memory controller arbitrates access requests
from the ray parameter generator and four ray tracing PEs in
round-robin fashion. Note that such sharing became possible
because the external memory traffic was reduced with a
dedicated BRAM inside each PE.

V. EXPERIMENTAL RESULT

A. Development Flow and Dataset Description

The core IPs, such as PEs and parameter generators, are
described in C and were transformed into RTL using the
Vivado HLS 2013.1. The code was carefully optimized to
achieve a throughput of 1. Some designs, such as the FIFOs,
controllers, and glue logic, were hand-written in RTL. The
Vivado-generated and hand-wirtten RTLs were synthesized,
mapped, placed, and routed using a Convey development
toolchain that is based on the Xilinx ISE.

To evaluate our algorithm, we used a chest CT dataset
from actual patients at our institution using a protocol
approved by our institution’s review board. The scan was
acquired using a helical cone beam protocol on a Siemens
Somatom Sensation 16 scanner (1040mm focus-detector
distance, 570 mm focus-isocenter distance). Two input data
was used - M.12500 and S.21800, as described in Table II.
Fifty iterations of the EM algorithm were performed.

Table II
TEST IMAGES

Image Detector Rotation # of Reconstr.
Array Size Speed Proj. volume

M.12500 672×16 1,160 proj 15,022 512×512×372
S.21800 / rotation 12,238 512×512×75

B. Performance, Area, and Accuracy

The execution time for Intel Xeon 5138 CPU, Tesla C1060
GPU, and Xilinx Virtex 6 LX760 FPGA is shown in Table
III. It shows that the proposed architecture has 85X and 54X
speedup over the single-thread CPU result. Even though the
FPGA has a much smaller DRAM bandwidth and a 28X
slower clock frequency than the CPU, the proposed system
has a higher performance because of higher parallelism
(256), data reuse optimization, and the customized circuitry.
S.21800 has less speedup than M.12500, because the reuse
rate was reduced due to smaller input data size.

Table III
EXECUTION TIME COMPARISON (UNIT: MINUTES, 50 ITERATIONS)

Platform Image Forward Backward Total

CPU M.12500 1253 2025 3280
S.21800 623 1039 1663

GPU M.12500 19.8 90.6 110
S.21800 15.8 68.3 84.1

FPGA M.12500 19.4 19.4 38.8 (84.5X↑)
(our work) S.21800 15.5 15.5 31.0 (53.6X↑)

For comparison, we also implemented a GPU version
using the same parameters and the same input data as the
FPGA version. We found that the proposed reuse scheme
degrades the performance in GPU architectures, because the



Table V
COMPARISON WITH OTHER FPGA/GPU WORKS ON 3D CT RECONSTRUCTION

Reference (Year) Platform Clock Freq Test Image (Projection Size) Algorithm Speedup

GPU- [3] (2003) GeForce 4 Ti 4600 300MHz MCAT (128×128×64) OS-EM 4.2X

based [6] (2008) GeForce 8800 GTX 575MHz Shepp-Logan (512×512×360) FDK 12X
[5] (2011) GeForce GTX 280 602MHz patient image (1240×960×543) FDK 22X

FPGA- [5] (2011) 8 Virtex-4 SX35 200MHz patient image (1240×960×543) FDK 35.8X

based [2] (2012) 4 Virtex-6 LX760 150MHz phantom image (736×64×500) EM-TV 8.4X
This paper (2014) 4 Virtex-6 LX760 75MHz patient image (672×72×15022) EM 85X

Table IV
RESOURCE CONSUMPTION PER FPGA

- LUTs FFs DSP48s BRAM18K
Total 331,173 284,691 416 1,072

Utilization 60% 34% 48% 74%

(a) (b) (c) (d) (e)

Figure 4. Reconstructed result image: M.12500 (a) slice 100 (b) slice 200
(c) slice 300; and S.21800 (d) slice 25 (e) slice 50

ray parameter generation has cosine operations that require
long computation time in GPU architectures. Therefore, the
GPU version only uses the ray-based reuse scheme, similar
to [2]. Thus, despite having 8X slower clock frequency,
FPGA has a performance advantage over GPU due to a
higher reuse opportunity and the customized architecture.

The resource consumption is shown in Table IV. Placing
multiple PEs and parameter generators led to a 60% utiliza-
tion ratio of LUTs. This complicated placement and routing,
and as a result, the clock frequency had to be reduced to
75MHz.

The original CPU software version has single-precision
floating-point variables, whereas the FPGA version has
variables with various bitwidth. Experiment shows that the
FPGA approaches the floating-point image quality within
36dB after 50 iterations.

Some slices (512×512×1) of the final reconstructed im-
age are shown in Figure 4.

C. Comparison With Other Work

Table V shows the comparison between our work and
other FPGA and GPU implementations. Since direct com-
parison is difficult, the speedup factor over CPU is shown
for relative comparison. It shows that this work has a higher
speedup factor than any other works.

The closest work is [2], which uses the same algorithm
and platform. The main difference is the reuse approach and
the customized architecture, which accounts for about a 10X
difference in performance. However, compared to the 55.3X
improvement observed in Table I, the performance gain
seems to be relatively small. This suggests that the DRAM
bandwidth is now under-utilized, and DRAM bandwidth is
no longer a performance-limiting factor.

A natural way of solving this problem is to add more PEs
per memory channel. However, Table IV shows that there

are not enough LUTs for more PEs. Thus, it can be inferred
that the next step of improvement would be to find a suitable
way of raising the utilization ratio of DRAM access and PEs,
without using too many logic resources.

VI. CONCLUSIONS

This paper describes the acceleration of the EM algorithm
on the Convey FPGA platform. A data reuse scheme based
on tiling is proposed to reduce external memory bandwidth.
A dedicated architecture suitable for the FPGA is presented
to increase the system memory bandwidth. The experimental
results show that the proposed system has a 85X speedup
over single-thread CPU implementation. It also shows that
the performance bottleneck has been changed to require
more logic resource for PE implementation and to increase
utilization ratio of PEs. This remains as future work.

ACKNOWLEDGMENT

The authors would like to thank Dr. Ming Yan and Dr.
Yi Zou for sharing the CT reconstruction C code. They are
also grateful to Dr. William Hsu for supplying the chest CT
dataset. This work was supported by the Center for Domain-
Specific Computing (CDSC) under the NSF Expeditions in
Computing Award CCF-0926127.

REFERENCES

[1] J. Bakos. High-performance heterogeneous computing with the
Convey HC-1. IEEE Computing in Science and Engineering,
12(6):80–87, 2010.

[2] J. Chen, J. Cong, L. A. Vese, J. Villasenor, M. Yan, and
Y. Zou. A hybrid architecture for compressive sensing 3-D
CT reconstruction. IEEE J. Emerging and Selected Topics in
Circuits and Syst., 2(3):616–625, 2012.

[3] K. Chidlow and T. Möller. Rapid emission tomography recon-
struction. in Proc. 2003 Eurographics/IEEE TVCG Workshop
on Volume Graphics, 15–26, 2003.

[4] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood
from incomplete data via the EM algorithm. J. Royal Statistical
Society, Series B, 39(1):1–38, 1977.

[5] H. Scherl, M. Kowarschik, H. Hofmann, B. Keck, and
J. Hornegger. Evaluation of state-of-the-art hardware ar-
chitectures for fast cone-beam CT reconstruction. Parallel
Computing, 38:111–124, 2011.

[6] G. Yan, J. Tian, S. Zhu, Y. Dai, and C. Qin. Fast cone-beam CT
image reconstruction using GPU hardware. J. X-Ray Science
and Technology, 16:225–234, 2008.

[7] H. Zhao and A. J. Reader. Fast ray-tracing technique to
calculate line integral paths in voxel arrays. in IEEE Nucl.
Sci. Symp. Conf. Record, 4:2808–2812, 2003.


