
Energy Efficiency of Full Pipelining: A Case Study for Matrix Multiplication
Peipei Zhou,∗ Hyunseok Park,∗ Zhenman Fang,∗ Jason Cong,∗ André DeHon†

∗ UCLA, Dept. of Computer Science, Los Angeles, CA 90095
† University of Pennsylvania, Dept. of ESE, 200 S. 33rd Street, Philadelphia, PA 19104

Email: {memoryzpp,parkhyu,zhenman,cong}@cs.ucla.edu, andre@ieee.org
Abstract—Customized pipeline designs that minimize the
pipeline initiation interval (II) maximize the throughput of
FPGA accelerators designed with high-level synthesis (HLS).
What is the impact of minimizing II on energy efficiency? Using
a matrix-multiply accelerator, we show that matrix multiplies
with II>1 can sometimes reduce dynamic energy below II=1
due to interconnect savings, but II=1 always achieves energy
close to the minimum. We also identify sources of inefficient
mapping in the commercial tool flow.

1. Introduction
To meet the ever-increasing demand for high computation

performance and energy efficiency, numerous commodity
acceleration platforms have been proposed and developed,
including the well-known many integrated cores (MICs, or In-
tel Xeon Phi processors), graphical processing units (GPUs),
field-programmable gate arrays (FPGAs), and application-
specific integrated circuits (ASICs) [1, 2, 3]. The utilization
wall [4] has stimulated interest in FPGAs, since FPGAs
provide both low power and customization capability to
accelerate different applications (more flexible than ASICs).

Compared to the general-purpose MICs and GPUs,
FPGAs allow designers to look beyond parallelization and
customize accelerators. The customized pipeline design has
been one of the most successful and widely used optimiza-
tions to improve the performance of FPGA accelerators
[5, 6, 7]. At the same time, the recent success of commercial
HLS tools like Xilinx Vivado HLS [8] has made design
space exploration for a customized pipeline easier compared
to conventional register transfer level (RTL) designs.

Among various tunable parameters in such pipeline
customization, the pipeline initiation interval (II)—which
is defined as the number of cycles between two consecu-
tive pipeline iterations [9]—is one of the most important
customization parameters since it reflects the throughput
of the pipeline design and has been widely studied (e.g.
[5, 6, 7]). Most prior studies, except [5], have focused on
minimizing the pipeline II so as to maximize the throughput
of FPGA accelerators. Meanwhile, there are also examples
[6] indicating that smaller pipeline II can reduce the energy
consumption of FPGA logic gates. Motivated by these
studies, this paper begins to explore a key question: Does a
customized pipeline with the minimum II always minimize
energy? If not, how does the pipeline II affect the energy
consumption?

To get initial insight into this question, we focus on
the classical matrix-multiplication algorithm specified in
C for HLS. We build an analytical model of the energy
consumption for the kernel as a function of matrix dimension,
N , and pipeline II , including the effects of computational,
interconnect, memory, and leakage energy. This allows us to
identify how the energy should scale with problem size and
II . We synthesize the HLS kernel with Vivado HLS and fit
constants within the analytical model. Along the way, we
identify sources of inefficiency in the commercial tool flow

that can cause the HLS solution to diverge from the ideal
scaling for the matrix-multiply kernel, which include:
1. Missing opportunities for register sharing.
2. Missing opportunities for address generator sharing.
3. Lack of power-gating for unused memory banks.

We find that the logic component of energy remains flat,
while memory and leakage components increase with II , but
interconnect can decrease with increasing II . Interconnect
savings are large enough that we can identify cases where
II > 1 minimizes energy. Nonetheless, we see that the
increasing energy term is modest, such that the II = 1 case
is always within a few percent for matrix-multiplies that can
fit on a single FPGA today. The energy framework identified
here should translate to other HLS kernels, but will have
different compute and interconnect scaling that should be
characterized and better understood in future work.

2. Related Work in Energy Modeling
FPGA energy models have been widely used to provide

guidance in design space explorations. Recent studies in [10]
developed analytical models to characterize energy consump-
tion of designs ranging from a sequential design (processor)
to a spatial design (FPGA), using Rent’s rule [11] as a
modeling tool. Earlier works [12, 13, 14] employed models
to provide in-depth analysis of FPGA power decomposition
and the impact of look-up table (LUT) size, cluster size,
and segment lengths on power consumption. Recent work
introduced FPGA memory models to analyze the effect of the
memory architecture (including block size, banking, physical
spacing) and parallelism on an application’s energy efficiency
[15]. While these works present detailed energy models, they
do not directly address the microarchitectural structure that
results from tuning the II in HLS designs. To the best of
our knowledge, this work is the first to model the impact of
the pipeline II on energy consumption of FPGA accelerators
from a high-level perspective.

3. Matrix-Multiplication Kernel

void m a t r i x m u l t i p l y (f l o a t a [N] [N] ,
f l o a t b [N] [N] , f l o a t c [N] [N]) {

i n t i , j , k , p ;
k loop : f o r (k = 0 ; k < N; k ++) {

i l o o p : f o r (i = 0 ; i < N; i ++) {
/ / i l o o p PIPELINE I I = I I i

p loop : f o r (p = 0 ; p < N; p += N/ I I i) {
pramga HLS PIPELINE I I = 1

j l o o p : f o r (j = 0 ; j < N/ I I i ; j ++) {
pragma HLS UNROLL
c [i] [p+ j] += a [i] [k] ∗ b [k] [p+ j] ;

} } } } }

Listing 1: Pseudo code of square matrix multiplication

Figure 1: Architecture for N = 6, II = 1

Figure 2: Architecture for N = 6, II = N = 6

To make it easier to understand, we use square N ×N
matrix-multiplication as an example to demonstrate the en-
ergy model for mapping applications with perfectly shareable
processing elements (PEs) onto a commodity FPGA. As
shown in Listing 1, to pipeline the i loop with a specific
II (e.g., II i = 1), we change the increment value of the
p index in the p loop and apply the HLS PIPELINE
pragma. Consequently, the inner-most j loop will be unrolled
automatically (HLS UNROLL pragma is shown to illustrate
this unroll but not needed explicitly). In the j loop, N

II i
elements within one row of the c matrix, c[i][p], c[i][p+ 1],
... , c[i][p + N

II i − 1] are updated using a[i][k] and N
II i

elements within one row of b matrix, b[k][p], b[k][p+1], ... ,
b[i][p+ N

II i − 1]. The PIPELINE II of i loop (i.e., II i, for
simplicity, we will directly use II for II i in the rest of the
paper) determines the throughput, resource utilization, and
dynamic energy to execute this matrix multiplication kernel.
Please note that the most straightforward matrix-multiply
algorithm would not have had a separate p loop and j loop.
However, when we initially used that description, Vivado
HLS did not share the local registers optimally when we
increase II . Fig. 1 and Fig. 2 show the architecture for N
= 6, II = 1 and II = N = 6 respectively when registers are
perfectly shared.

The resources and cycles to finish the matrix multiplica-
tion kernel can be generalized in terms of problem size N
and PIPELINE II of the i loop.

1. There are N
II multiplier(s) and N

II adder(s), and each
computes II elements within one row. The number of
B or C input/output registers and temporary registers
between multipliers and adders is N

II .

2. There are N
II independent memory bank(s) for the b matrix,

each with II column(s). It is the same for the c matrix.
Only one memory bank is needed for the a matrix since
a[i][k] is shared within one i loop iteration.

3. The number of cycles to finish the kernel is N2 × II .

TABLE 1: HLS reported resource usage for multiplier and
adder under different IIs, N=24

II 1 2 3 4 6 8 12 24
DSP 120 60 40 30 20 15 10 5
FF 8520 4260 2840 2130 1420 1065 710 355

LUT 8376 4188 2792 2094 1396 1047 698 349

4. Energy Model
4.1. Computation Energy

The computation energy includes arithmetic energy
(multiply-add operations) and register energy for holding
the inputs, outputs, and temporaries. We can perfectly share
these PEs and registers by factor of II, making the total PE
and register energy consumption:

Ecompute ∝
N

II
×
(
N2 × II

)
= N3 (1)

For Xilinx 7 Series FPGAs, each multiply-add needs three
DSP48E [16] for the floating-point multiplier and two
DSP48E for the adder along with a fixed number of LUTs
and FFs. Table 1 shows the resource usage for multipliers
and adders decreasing as 1

II since PEs are perfectly shared.

4.2. Memory Energy
In order to fully pipeline the matrix multiplication, each

PE needs to access each column of the b and c matrix simulta-
neously. HLS provides comprehensive partition pragmas [8]
to easily partition an array into individual memory banks. For
example, we use the complete partition pragma to partition b
along the column direction. Each column, b[..][N], becomes
an individual memory block.

As II increases, the number of simultaneous accesses
to the b matrix decreases, which means more columns can
be placed in the same memory bank with size of N × II .
In this design, cyclic partition pragma is applied to the b
and c matricies to automatically split the memory along the
column direction in N

II equally sized blocks interleaving the
original array.

In general, there are N
II b or c banks; within each, II

columns of data are stored. We need to consider the total
memory energy when accessing these banks. In total, there
are N3 b memory reads, N3 c memory reads and writes, and
N2 a memory reads, which we could safely ignore when N
is large enough. Each memory access is from a logic memory
bank with size of N × II . On Xilinx 7 series FPGAs, all
the logic memory banks are constructed using the embedded
BRAM18K memory banks on the chip [17].

If we activate a single BRAM for each read within a
bank, the total energy reading from BRAMs is constant at:

Emem ∝
N

II
×
(
N2 × II

)
= N3 (2)

When the logical memory bank size is larger than
physical BRAM18K bank size, it needs to be constructed
using multiple BRAM18K banks, and the area of each logical
memory bank increases. This impacts the wiring as we see
in the next section.

4.3. Interconnect Wire Energy
The wire energy can be decomposed into wires within

PEs and wires connecting PEs and memory. Wiring within
the PE is fixed and will scale with the compute energy.

Ewire.in.pe ∝
N

II
×
(
N2 × II

)
= N3 (3)

Figure 3: Routing of broadcasting a[i][k] to all 24 multipliers,
N = 24, II = 1

Wire transferring broadcast data. In this matrix-
multiply algorithm, broadcast wires must transfer a[i][k] from
the memory bank storing the a matrix to the multipliers as
shown in Fig. 3. The BRAM blocks storing the a matrix are
close to the input register, Ain, and close to one multiplier.
This broadcast should take energy proportional to the total
area of all the PEs it is feeding.1 As II increases, the total
PE area scales as N

II , until we can no longer fit N × II
elements of the b matrix into a single BRAM. Thus the total
energy for broadcasting a[i][k] is:

Ewire.share.A ∝
N

II
×N2 =

N3

II
(4)

After N × II > BRAM18K, this scaling changes in
interesting ways. At this point, the total layout area for
all the PEs becomes dictated by BRAMs not DSPs, and the
area does not change with II. If we must broadcast to all the
BRAMs, this means the broadcast energy does not shrink
with II.

Ewire.share.A ∝ N2 ×N2 = N4 (5)

However, we really only need to broadcast to a few BRAMs
within a PE, allowing the broadcast energy to continue to
shrink with increasing II. Current synthesis tools do not
exploit this opportunity.

Wire transferring private data. When the logical mem-
ory bank size N × II is smaller than size of the physical
BRAM18K bank (18432 bits, 576 floating-point numbers),
the wiring between the private c and b matrix memory banks
and the PE logic is constant, so the total energy for wiring
also scales proportionally, independent of II:

Ewire.priv.B,C ∝
N

II
×
(
N2 × II

)
= N3 (6)

When the logical memory bank size is larger than
physical BRAM18K bank size, the wiring between the private
b and c memory banks and the PE logic also grows as the
square root of the memory capacity or

√
N × II . Thus, the

total energy routing memory is

Ewire.priv.B,C ∝ N

II
×
(
N2 × II

)
×
√
N × II

∝ N3.5II0.5 (7)

1. [18] shows the H-tree layout has linear layout area, which implies
linear wirelength in the area, which in turn implies linear energy.

4.4. Leakage
During the computation, the FPGA will also leak energy

proportional to the time for the computation and the resources
that leak during the computation. If we put nothing else on
the FPGA and use a fixed size FPGA that does not offer
any power gating for unused components, leakage increases
with runtime and hence II:

Eleak ∝ N2 × II × EFPGA leak (8)

However, if we use a design with perfect power gating
of unused components, the leakage should scale with the
utilized logic. For the case where N × II < BRAM18K:

Eleak ∝
N

II
×N2 × II = N3 (9)

If we exploit the smaller resources of the II > 1 designs
to use a smaller FPGA, we can get some of the effects of
Eq. 9. Similarly, if we exploit the smaller resource utilization
of the II > 1 to put additional logic onto the FPGA that
fills the resources unused by the matrix-multiply, the leakage
attributable to the multiply should scale closer to Eq. 9.

4.5. Total Energy
Putting all the energy components together and assuming

perfect power gating (Eq. 9), we have total energy as the
follows:

Etotal = Ecompute + Ememory + Ewire + Eleak

=


N3
(
c1 + c2

II

)
,

if N × II ≤ BRAM18K
N3
(
c3 + c4×N + c5× II0.5

)
,

if N × II > BRAM18K

(10)

5. Results
For small N , when the design is not memory dominated,

we can expect to see decreasing energy until N × II =
BRAM18K driven by broadcast wiring energy. Beyond
that, we expect to see energy increase with II due to wiring
energy between BRAMs and computation within a PE.

We mapped the HLS designs to an Virtix-7 XC7VX485T
using Vivado 2015.1.5. We simulated each mapped design
in Vivado with random a and b matricies. We then used the
Switching Activity Interchange format (SAIF) file generated
from post-implementation simulation to estimate the energy
required by the mapped designs. From the mapped designs,
we used linear regression fit to determine the constants c1–c5
in Eq. 10.

Fig. 4 shows how the energy components scale with II
from the Vivado mapped designs along with the total energy
model from our fit model. We can see the mostly flat DSP and
logic energies that match the analytic description. We also see
that the interconnect energy and the overall energy drop with
increasing to II = 16 where N×II = BRAM18K. We see
the interconnect energy grow after that as expected. However,
we also see that BRAM energy, rather than remaining flat,
increases with II after II = 16. Here, Vivado mapped
designs are unnecessarily activating all of the BRAMs, not
just the BRAM that holds the data needed on each cycle. This
makes the total design energy unreasonably high for large II .
It should be possible to avoid activating the unused BRAMs
as illustrated in [15, 19]. Making the perfect power gating
assumption, we see that energy is minimized at II = 8.
However, the effect is small and the benefit over II = 1 is

Figure 4: Energy Scaling with II for N = 64 Matrix Multiply

Figure 5: Scaling with N for Matrix Multiply

less than 3%. If we get less than perfect power gating, this
effect will easily be dominated by an increase in leakage
energy with II.

Fig. 5 shows how energy scales with N , including how
this effects the optimal II and our model fit. The II for
the minimum energy point decreases with N since larger
N means the single BRAM capacity is reached at a lower
II . Since all energy components scale as N3 for the region
where N×II ≤ BRAM18K, the energy proportions remain
the same as N grows.

Note that all the PEs are generating the same addresses
for their local b and c memories. Consequently, the design can
use a single address generator for all the BRAMs. However,
for some values of N and II , Vivado HLS will not share the
address generators, resulting in much larger logic energy at
those design points. Also, as we pointed out earlier, without
adding the p loop in Listing 1, the HLS tool fails to share
the registers properly.

6. Conclusion and Future Work
Interconnect energy within our matrix-multiply kernel is

minimized for an II that is typically greater than one. With
efficient power gating or alternate use of chip resources, this

can lead to minimum total energy at a point other than the
fully pipelined, II=1 point. Nonetheless, the effect is small
and the fully pipelined design often uses the least energy in
practice, both due to leakage and other discrete and non-ideal
scaling effects.

The energy modeling framework illustrated here should
be adaptable to other kernels. However, there is good reason
to believe that kernels will differ in how they scale in key
areas. We expect interconnect energy to scale differently
for other tasks or even implementations of the same task.
For example, using the systolic-array implementation of
matrix multiply [20], one may see different scaling. Our
matrix-multiply kernel had near perfect sharing of logic as
II increased, which will not be the case for less regular tasks.
Consequently, it will be useful to characterize how these
components scale for other tasks and develop a suitably
parameterized energy model that can be adapted to various
tasks characteristics. Ultimately, we hope model generation
can be automated and provide high-level guidance for
designers. As illustrated here, these models may also help to
identify inefficiencies in current mapping tools that should
be addressed to achieve energy efficient designs.

Acknowledgments
This work is partially supported by the Center for

Domain-Specific Computing under the Intel Award 20134321
and NSF Award CCF-1436827. It is also supported in part by
C-FAR, one of the six centers of STARnet, a Semiconductor
Research Corporation program sponsored by MARCO and
DARPA.

References
[1] A. Duran and M. Klemm, “The intel many integrated core architecture,” in

HPCS, July 2012, pp. 365–366.
[2] S. Che et al., “Accelerating compute-intensive applications with GPUs and

FPGAs,” in SASP, June 2008, pp. 101–107.
[3] H. K. Phoon et al., “A highly compatible architecture design for optimum FPGA

to structured-ASIC migration,” in ICSE, Oct 2006, pp. 506–510.
[4] M. Taylor, “Is dark silicon useful? harnessing the four horsemen of the coming

dark silicon apocalypse,” in DAC, June 2012, pp. 1131–1136.
[5] P. Li et al., “Resource-aware throughput optimization for high-level synthesis,”

in FPGA, 2015, pp. 200–209.
[6] J. Cong et al., “A fully pipelined and dynamically composable architecture of

cgra,” in FCCM, May 2014, pp. 9–16.
[7] J. Cong et al., “Automatic memory partitioning and scheduling for throughput

and power optimization,” TODAES, vol. 16, no. 2, pp. 15:1–15:25, Apr 2011.
[8] Xilinx, “Vivado High-Level Synthesis.” [Online]. Available:

http://www.xilinx.com/products/design-tools/vivado/integration/esl-
design/index.htm

[9] M. Lam, “Software pipelining: An effective scheduling technique for vliw
machines,” in PLDI, 1988, pp. 318–328.

[10] A. DeHon, “Fundamental underpinnings of reconfigurable computing architec-
tures,” Proc. IEEE, vol. 103, no. 3, pp. 355–378, March 2015.

[11] B. Landman and R. L. Russo, “On a pin versus block relationship for partitions
of logic graphs,” TC, vol. C-20, no. 12, pp. 1469–1479, Dec 1971.

[12] K. Poon et al., “A detailed power model for field-programmable gate arrays,”
TODAES, vol. 10, no. 2, pp. 279–302, Apr. 2005.

[13] F. Li et al., “Power modeling and characteristics of field programmable gate
arrays,” TCAD, vol. 24, no. 11, pp. 1712–1724, Nov 2005.

[14] S. Rajavel and A. Akoglu, “An analytical energy model to accelerate FPGA
logic architecture investigation,” in ICFPT, Dec 2011, pp. 1–8.

[15] E. Kadric et al., “Impact of memory architecture on FPGA energy consumption,”
in FPGA, 2015, pp. 146–155.

[16] Xilinx 7 Series DSP48E1 Slice User Guide.
[17] Xilinx 7 Series FPGAs Memory Resources.
[18] C. E. Leiserson, “Area efficient graph layouts (for VLSI),” in FOCS, 1980, pp.

270–281.
[19] R. Tessier et al., “Power-efficient RAM mapping algorithms for FPGA embed-

ded memory blocks,” TCAD, vol. 26, no. 2, pp. 278–290, Feb 2007.
[20] J. wook Jang, S. Choi, and V. K. Prasanna, “Energy-efficient matrix multiplica-

tion on FPGAs,” TVLSI, vol. 13, no. 11, pp. 1305–1319, November 2005.

