
A Novel High-Throughput Acceleration Engine for Read Alignment

Yu-Ting Chen,⇤ Jason Cong,⇤ Jie Lei⇤† and Peng Wei⇤
⇤Computer Science Department, University of California, Los Angeles, USA

{ytchen, cong, jielei, peng.wei.prc}@cs.ucla.edu
†State Key Laboratory of Integrated Services Networks, Xidian University, China

jielei@mail.xidian.edu.cn

Abstract—The Smith-Waterman (S-W) algorithm is widely
adopted by the state-of-the-art DNA sequence aligners. Existing
wavefront-based methods ignored the fact that the S-W algo-
rithm is fed with significantly varied-size inputs in modern
aligners, in which the S-W algorithm is further optimized
by exerting extensive pruning. In this paper we propose
an architecture, tailored for varied input sizes as well as
harnessing software pruning strategies, to accelerate S-W. Our
implementation demonstrates a 26.4x speedup over a 24-thread
Intel Haswell Xeon server, and outperforms wavefront-based
implementations by up to 6x with the same FPGA resource.

Keywords-read alignment; Smith-Waterman; FPGA; HLS;
multilevel scheduling

I. INTRODUCTION

Next-generation sequencing (NGS) technologies have at-
tracted a large amount of attention from both researchers and
clinicians. Human DNA samples are chopped into billions
of small fragments, called reads, and a sequencer determines
the order of each read’s nucleotides. A software aligner
then maps the billions of sequenced reads onto a reference
human genome, which entails tremendous computational
challenges. A read typically consists of hundreds of nu-
cleotides or base pairs (bps), while the reference genome
contains 3.2 billion bps [1].

State-of-the-art read aligners, such as BWA-MEM [2] and
Bowtie 2 [3], carry out the read mapping in two steps. First,
each read is fragmented into small pieces called seeds, and
mapped to the reference genome. The mapping of seeds
to the reference genome must be exact, i.e., no gap or
mismatch is allowed. A backward search algorithm based
on the Burrows-Wheeler Transform (BWT) [4] takes only
O(m) time for a seed of length m to map to the super-
long reference genome, independent of the size of the
reference genome, and therefore is employed by almost all
contemporary sequence aligners.

In the second step, each seed map gets extended left-
ward and rightward to span the entire read. The extensions
allow inexact mappings, in which gaps and mismatches
are allowed. A predefined scoring function is provided for
evaluating the effectiveness of inexact mappings. Only the
ones that achieve high enough scores are recorded in the
output. The Smith-Waterman (S-W) algorithm, a dynamic
programming (DP) algorithm with quadratic time complex-

ity, is a commonly used approach for the inexact mapping
step. It is the main computation bottleneck in state-of-the-art
aligners like BWA-MEM (30%-50% computation time) [2].
In this work we focus on accelerating the S-W algorithm in
BWA-MEM. The methodology, however, can be applied to
other aligners, such as Bowtie 2 [3] and LAST [5].

The S-W algorithm is inherently anti-diagonal paralleliz-
able, since the elements along the anti-diagonal direction in
the 2D table used for the DP procedure are independent of
each other [6]. This feature, called wavefront, has been ex-
plored in different ways on different platforms [7][8][9][10].
It works fairly well when input sizes are homogeneous.
However, the wavefront-based techniques applied to the
general S-W algorithm do not fit well for the optimized
version used in BWA-MEM. First, a huge number of reads
at the billion scale need to be processed in a high-throughput
fashion. Conventional approaches overemphasize the inner-
task parallelism while neglecting the task-level parallelism.
Second, conventional wavefront-based architectures cannot
utilize computational resources efficiently when the input
sizes vary sharply. Third, the pruning heuristic used in BWA-
MEM prevents the wavefront-based techniques from being
adopted directly and efficiently.

In this paper we propose an architecture to address these
issues. The novelties of our architecture can be summarized
as follows: (1) we propose an array-based architecture
for processing the enormous number of reads in a high-
throughput fashion, adapting better to inputs with widely
varied sizes; (2) we provide a two-level hierarchical ar-
chitecture for resource management, reducing the amount
of resources needed for synthesizing bus interfaces while
satisfying the off-chip bandwidth demand; (3) our design
supports the pruning technique, shortening the runtime of
the S-W algorithm significantly.

Our FPGA implementation demonstrates a 26.4x speedup
compared to a 24-thread Intel Haswell Xeon server for the
S-W algorithm in BWA-MEM. We also show that our design
outperforms wavefront-based S-W implementations by up to
6x with the same FPGA resource utilization.

II. BASIS OF OUR APPROACH

Our acceleration engine design is based on the following
three important observations derived from an analysis of the



S-W implementation in BWA-MEM.
Observation 1: Enormous Task-Level Parallelism
A sequencer can generate billions of reads from a single

individual for analysis in today’s NGS flow. The huge
amount of data generates enormous task-level parallelism,
prompting us to reexamine the conventional wavefront tech-
nique for S-W acceleration. The conventional wavefront
technique exploits the inner-task anti-diagonal parallelism
to maximize the speedup for a single task. However, the
wavefront implementation is not optimal when the task-
level parallelism is several orders of magnitude larger than
the inner-task parallelism. For an accelerator platform with
limited resources, e.g., a FPGA board with a certain amount
of LUTs (DSPs, BRAMs, etc.), we must decide if the
resources should be allocated for exploiting the task-level
parallelism or the inner-task parallelism.

Observation 2: Significantly Varied-Size Inputs
For simplicity without losing generality, we abstract the

total resources of an accelerator platform into a given num-
ber of unified processing elements (PEs). We also assume
that each PE is capable of producing one value per cycle to
fill the 2D table in the DP algorithm. A kernel is composed
of a group of PEs and can be assigned to execute one S-W
task. We denote mxn as a pair of input strings for the S-W
algorithm with length m and n.

The sharply varied input sizes of S-W in BWA-MEM
result in a considerable waste of resources in wavefront-
based designs. For example, a kernel of 10 PEs is only
able to reach a maximum of 65% resource utilization for
a 13x103 input because the length of the maximal anti-
diagonals (13) is not divisible by the number of PEs (10).
It takes 2 cycles for 10 PEs to fill an anti-diagonal with
13 elements. Figure 1 provides a histogram of the sizes
of the shorter strings (bounding the maximum degrees of
parallelism) over 10M inputs of randomly selected BWA-
MEM S-W tasks. The sizes range from one to 84, and none
of them has more than 5% of the 10M inputs. The significant
diversity of input sizes makes it prohibitive to choose one
or a few kinds of PEs to avoid wasting resources. A better
choice is to have each kernel restricted to only one PE, which
means the anti-diagonal parallelism gets totally ignored.

Observation 3: Pruning Strategies
Derived from the X-dropoff pruning strategy in BLAST

[11], BWA-MEM’s pruning strategy is able to save over
50% in computation efforts for S-W tasks, as illustrated in
Figure 2. However, the pruning strategy destroys the basis
of the anti-diagonal parallelism, as described in detail in
[2]. Moreover, the results generated by the optimized S-W
algorithm in BWA-MEM are slightly different from those
obtained by the standard S-W algorithm. This increases the
difficulty of integrating existing wavefront-based work into
BWA-MEM for the concern of the result credibility. Even if
the difficulty of integration can be overcome, the potential

speedup from pruning would have to be sacrificed due to
its incompatibility with the wavefront technique. It will be
even worse when the sizes of seeds become longer, which
is the future trend for NGS.

Figure 1. Histogram of the lengths of the shorter input strings collected
from 10 million randomly selected BWA-MEM S-W tasks.

Figure 2. A 55x105 BWA-MEM Smith-Waterman task. The general S-W
algorithm requires filling up a 55x105 matrix (5775 elements), but only
2836 elements (49%) were actually filled with the help of pruning. The
black area in the left graph illustrates the elements that got filled, and
the right graph shows how many elements for each target loop index are
actually calculated.

III. ARCHITECTURE DESIGN AND
IMPLEMENTATION

A. Overall Architecture
Our accelerator engine consists of multiple PE arrays.

Each PE array has a task distributor connected to the off-
chip memory via an AXI bus interface, as shown in Figure
3. Each PE acts as one kernel and can take one S-W task at
a time to maximize throughput.

Before the accelerator starts to operate, the host processor
assembles a set of query and target sequence pairs and
streams them to the on-board DDR3 memory via the PCIe
bus. After that, each PE array’s task distributor fetches a
certain number of sequence pairs and distributes them to the
idled PEs. The mapping results are stored in the on-board
memory and then sent back to the host.

B. Processing Element (PE) Design
By using the high-level synthesis methodology, the hard-

ware structure of a PE is created based on the S-W soft-
ware code obtained from the software implementation of
BWA-MEM. Unlike wavefront-based solutions that look
completely different from the software structure, our design
naturally follows the original software structure, which con-
siderably shortens the development cycle.



To maximize throughput, we make the initiation interval
(II) of the PE design be equal to one (II=1), i.e., calculating
one cell of the score matrix per cycle. Moreover, a con-
ditional branch logic is implemented to realize pruning. It
enlarges the size of each PE by 20%, but reduces computa-
tion effort by over 50%.

Figure 3. An overall architecture of the proposed accelerator engine.

C. Two-Level Task Scheduling
The first level of task scheduling resides in a PE array.

A PE array includes three types of major components: (1) a
task distributor, (2) a set of PEs, and (3) a result collector (as
shown in Figure 4). The task distributor fetches data from
the on-board DRAM to the on-chip BRAM and dynamically
dispatches the tasks to each PE through a FIFO. The result
collector receives mapping results from each PE through a
FIFO and packs them together for the host.

Figure 4. The design of a PE array.

If a centralized task distributor is not provided, each PE
needs to fetch data from on-board memory independently.

This incurs a significant (25%) area overhead per PE to
synthesize its own AXI interface. To reduce the overhead,
we use only one AXI bus interface for each task distributor
per PE array. A PE array, acting as an AXI bus master,
fetches a group of data that satisfy the off-chip bandwidth
demand of all PEs in the array. We also implement ping-
pong buffering by using a pair of BRAM blocks for better
performance. After the data are prefetched to BRAM, the
distributor checks the flag of the FIFO of each PE one by one
to find an available PE. The task distributor then transfers
the S-W tasks from BRAM to the FIFOs of the PE. This
process continues until all the tasks are processed. The result
collector continues monitoring the output FIFO of each PE
and obtaining results until all the results are received.

If the number of PEs is small, the one-level task schedul-
ing is sufficient. However, when the number of PEs is
increased to a certain point, e.g., 50, the distributor be-
comes a performance bottleneck due to its round-robin
task scheduling scheme. Therefore, we introduce a two-
level task scheduling scheme which feeds tasks to multiple
arrays, each with its own task distributor. This two-level
hierarchy provides us with a scalable design methodology
for obtaining scalable speedup.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

Our design is described in HLS C and synthesized using
the Vivado HLS [12]. The accelerator engine contains two
PE arrays, each composed of 50 PEs, and can run at 150MHz
on the Xilinx VC707 FPGA evaluation board. The FPGA
resource utilization is approximately 65% (LUTs: 65.4%,
FFs: 30.7%, BRAMs: 21.7%). We use an input with 100M
reads, which is a subset collected from a real individual
human genome sample (about 500M reads, 120GB FASTQ
file) with breast cancer (HCC1954). We verify the outputs
of our FPGA implementation with the seed extension step
of BWA-MEM to ensure correctness.

B. Speedup Over Software-Based BWA-MEM

To demonstrate the speedup of our accelerator engine over
the original BWA-MEM software, an Intel Haswell Xeon
server with two 6-core CPUs is used. The server can run
24 threads in parallel, with hyper-threading support. We
compare the execution time of our FPGA implementation to
pure software-optimized S-W algorithm runtimes with 1, 2,
4, 8, 16 and 24 threads. To make a fair comparison, only the
computation time of the S-W calls (after loading inputs from
memory and before storing outputs to memory) is collected.

Figure 5 shows the performance comparison between our
FPGA design and the software BWA-MEM S-W algorithm
with results normalized to the single-threaded CPU perfor-
mance. Our FPGA design outperforms the 24-thread CPU
by 26.4x.



C. Speedup Over Wavefront-Based Designs
To highlight the advantage of our design over wavefront-

based techniques, we compare the runtime of our accelerator
engine to those of a set of wavefront-based FPGA implemen-
tations described in [9]. To arrive at a fair comparison, we
implement all designs with roughly the same FPGA resource
utilization.

Table I shows the wavefront-based designs that we im-
plemented for comparison. A design containing n kernels
with m PE per kernel is denoted by mPxnK. We use the
32Px5K configuration as the base unit for comparison. We
find that the performance of the wavefront-based designs
generally decreases when the number of PEs per kernel (m)
increases, though the performance does not decrease fully
monotonically, as shown in Figure 6. In general, this verifies
that the wavefront-based designs have worse PE utilization
rates compared to our design.

Figure 5. Performance comparison between our FPGA design and the
multithreaded BWA-MEM software. A base-2 logarithmic scale is used for
the Y axis to denote the normalized performance.

Figure 6. Performance comparison between our design and a set of
wavefront-based designs. The Y axis denotes the performance normalized
to that of the 32Px5K configuration.

Furthermore, Figure 6 also demonstrates the power of
pruning. When the wavefront design goes to the extreme
where a kernel is restricted to only one PE (1Px116K),
the only difference between our design and the 1Px116K
design is whether the pruning logics are realized. Compared
to the 1Px116K design, our design shows about 2x speedup.
Our current design uses reads with a length of 101bp. Since
the NGS flow will generate longer reads in the future, the
performance improvement from pruning is expected to be
much more significant.

V. CONCLUSIONS

In this paper we design an architecture to efficiently
accelerate the S-W algorithm, which is the computation
bottleneck in the state-of-the-art read aligner, BWA-MEM.
Massive task-level parallelism, sharply varied input sizes,
and software-pruning strategies are all well supported in
our design. Our FPGA implementation demonstrates a 26.4x
speedup over a 24-thread Intel Xeon server, as well as up to
a 6x improvement over wavefront-based implementations.

Table I
CONFIGURATION OF DIFFERENT DESIGNS

Design Resource Utilization (%) #Kernels #PEs/Kernel
1Px116K 64.9 116 1
2Px64K 64.6 64 2
4Px34K 64.9 34 4
8Px18K 66.8 18 8
16Px10K 73.1 10 16
32Px5K 72.6 5 32

Our Design 65.4 100 1

ACKNOWLEDGMENT
This work is partially supported by the Intel Corporation

with the matching fund from the NSF under the Innovation
Transition (InTrans) Program (CCF-1436827), and by the
National Science Foundation of China (No. 61301287).

REFERENCES

[1] E. R. Mardis, “The impact of next-generation sequencing
technology on genetics,” Trends in Genetics, vol. 24, no. 3,
pp. 133 – 141, 2008.

[2] H. Li, “Aligning sequence reads, clone sequences and assem-
bly contigs with BWA-MEM,” ArXiv e-prints, Mar. 2013.

[3] B. Langmead and S. Salzberg, “Fast gapped-read alignment
with Bowtie 2,” Nature Method, vol. 9, pp. 357–359, 2012.

[4] M. Burrows and D. J. Wheeler, “A block-sorting lossless data
compression algorithm,” Tech. Rep., 1994.

[5] M. Frith, M. Hamada, and P. Horton, “Parameters for accurate
genome alignment,” BMC Bioinformatics, vol. 11, no. 1,
p. 80, 2010.

[6] E. Edmiston, N. Core, J. Saltz, and R. Smith, “Parallel
processing of biological sequence comparison algorithms,”
IJPP, vol. 17, no. 3, pp. 259–275, 1988.

[7] T. Preusser, O. Knodel, and R. Spallek, “Short-read mapping
by a systolic custom FPGA computation,” in FCCM, 2012,
pp. 169–176.

[8] A. Madhavan, T. Sherwood, and D. Strukov, “Race logic: A
hardware acceleration for dynamic programming algorithms,”
in ISCA, June 2014, pp. 517–528.

[9] P. Zhang, G. Tan, and G. R. Gao, “Implementation of the
Smith-Waterman algorithm on a reconfigurable supercomput-
ing platform,” in HPRCTA, 2007, pp. 39–48.

[10] B. C. Lam, C. Pascoe, S. Schaecher, H. Lam, and A. D.
George, “BSW: FPGA-accelerated BLAST-wrapped Smith-
Waterman aligner,” in ReConFig, 2013, pp. 1–7.

[11] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J.
Lipman, “Basic local alignment search tool,” Journal of
Molecular Biology, vol. 215, no. 3, pp. 403 – 410, 1990.

[12] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and
Z. Zhang, “High-level synthesis for FPGAs: From prototyping
to deployment,” TCAD, vol. 30, no. 4, pp. 473–491, 2011.


