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ABSTRACT
Miniaturized fluorescent calcium imaging microscopes are widely
used for monitoring the activity of a large population of neurons in
freely behaving animals in vivo. Conventional calcium image anal-
yses extract calcium traces by iterative and bulk image processing
and they are hard to meet the power and latency requirements for
neurofeedback devices. In this paper, we propose the calcium image
processing pipeline based on a bit-sparse long short-term memory
(LSTM) inference kernel (BLINK) for efficient calcium trace extrac-
tion. It largely reduces the power and latency while remaining the
trace extraction accuracy. We implemented the customized pipeline
on the Ultra96 platform. It can extract calcium traces from up to
1024 cells with sub-ms latency on a single FPGA device. We de-
signed the BLINK circuits in a 28-nm technology. Evaluation shows
that the proposed bit-sparse representation can reduce the circuit
area by 38.7% and save the power consumption by 38.4% without
accuracy loss. The BLINK circuits achieve 410 pJ/inference, which
has 6293x and 52.4x gains in energy efficiency compared to the
evaluation on the high performance CPU and GPU, respectively.

CCS CONCEPTS
• Hardware → Reconfigurable logic and FPGAs; Logic cir-
cuits; • Computing methodologies → Machine learning.
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Figure 1: Calcium trace extraction from images recorded by
the miniscope for closed-loop feedback applications.

1 INTRODUCTION
In-vivo calcium imaging is an emerging technique for monitor-
ing the activity from a large population of neurons in the brain
of a freely behaving animal, such as mouse or rat [1]. Such tech-
nique is usually realized by mounting a miniaturized fluorescence
microscope ("miniscope") onto the animal’s head to obtain video
recordings of calcium activity, as Fig. 1 shows. In such recordings,
a punctate flash of fluorescence is observed at a specific location
when a particular neuron becomes active. The miniscope can record
the activity from hundreds of neurons simultaneously over weeks
or months as the animal engages in various behavioral tasks.

The cell trace extraction from calcium images is typically done
offline. Such calcium image analyses [12, 18] are computationally in-
tensive, and they often run slower than the imaging even deployed
on high-end CPUs or GPUs. Given the computation complexity,
it is hard to meet the power and latency requirements for neuro-
feedback devices, which requires a 2◦𝐶 temperature increase limit
as neural implants [14]. As the temporal and spatial resolution of
the miniscope increase [10], the gap between the desirable and
achievable energy efficiency and latency escalates.

A high energy-efficiency and short-latency cell trace extraction
with accuracy close to the offline analysis method is in demand,
because it will enable the online decoding of the neural activity
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and support a wide range of neurofeedback applications with the
closed-loop feedback capability.

In this paper, we propose a bit-sparse long short-term memory
(LSTM) inference kernel (BLINK) based calcium image processing
pipeline. First, we introduce the proposed trace extraction method
based on the LSTM inference. Then we introduce the bit-sparse
representation of the LSTM inference and evaluate the energy ef-
ficiency gain. Finally, we design circuits for the BLINK and make
comparison on the energy efficiency and performance against eval-
uations on multi-core CPU and GPU platforms. The contributions
of the paper are summarized below:

• To our best knowledge, we are the first to propose an LSTM-
based calcium image processing pipeline that has the poten-
tial to enable the closed-loop neurofeedback at the spike-
timing resolution. It removes the acausal delay while re-
maining the trace extraction accuracy by using the LSTM
inference to approximate the offline method.

• We propose the bit-sparse representation that improves the
energy efficiency of the LSTM inference by replacing the
dense matrix multiplication with the bit shift operation.

• We demonstrate the customized pipeline for the 1024-cell
trace extraction on the Ultra96. BLINK circuits designed in a
28-nm process achieves 410 pJ/inference, which has 6293x
and 52.4x gains in energy efficiency against the evaluations
on the E5-2680 CPU and the V100 GPU, respectively.

2 BACKGROUND
2.1 Calcium Image Processing
Several pipelines for the calcium image processing have been pro-
posed [12, 18]. These methods use the iterative constrained nonneg-
ative matrix factorization (CNMF) to extract the spatial footprints
and temporal traces of cells simultaneously from the bulk of images.
Although the implementation of the CNMF algorithm on high-end
CPU and GPU platforms can meet the real-time throughput [5], two
reasons prevent it from being used for closed-loop neurofeedback
devices. First, the power consumption is in the order of tens of
watts, which is not affordable for a head-mounted neurofeedback
device powered on a single battery. The accumulated heat caused
by the power consumption can easily exceed the limit of 2◦𝐶 tem-
perature increase for neural implants [14]. Secondly, the bulk image
processing induces long and non-deterministic processing latency,
which is not desired for generating the neurofeedback stimulation
at the spike-timing resolution of 1 ms [10].

2.2 Online Trace Extraction
Fig. 2(a) shows an online calcium image processing pipeline com-
posed of three consecutive steps: the motion correction, the image
enhancement and the calcium trace extraction. The motion cor-
rection removes the motion artifact caused by the brain tissue
movement during the recording. The enhancement gets rid of the
background estimated from the current frame of image by the
morphological algorithm [12]. Fig. 2(b) shows an example of the
enhanced image, from which cell templates extracted by the CNMF
algorithm offline can be used to extract the calcium traces online.
Each cell template is an 𝑁𝐶 ×𝑁𝐶 binary mask, as Fig. 2(c) illustrates.
Within the mask, the "1" (shaded) labels the cell footprint and the
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Figure 2: (a) Online calcium image processing pipeline. (b)
Calcium image enhancement. (c) Template-based calcium
trace extraction.

"0" (unshaded) labels the background. Pixel values corresponding
to the cell footprint are accumulated as the fluorescence intensity.
A time series of fluorescence intensities is extracted as the calcium
trace for each cell. Fig. 2(c) shows an example of the cell template
and its corresponding calcium trace extracted for the cell. There
are typically hundreds of cells in the calcium image video recorded
by the miniscope.

Such template-based calcium trace extraction is sensitive to the
noise and it usually cannot match the CNMF method in accuracy,
especially for the cells whose fluorescence has a relatively low
signal-to-noise ratio (SNR). Such accuracy degradation can lead to
errors in the neural signal decoding and the neurofeedback stimu-
lation. An approach that can remain high calcium trace extraction
accuracy while achieving high energy efficiency and short latency
is in demand.

2.3 LSTM Approach
The LSTM [8] is a type of recurrent neural network and it has been
successfully used in many time-series prediction applications such
as the speech recognition and the text generation. Fig. 3 illustrates
the single-layer LSTM architecture. It consists of the feedforward
path and the recurrent path. The feedforward path is composed of
4 types of gates: the input gate 𝐼 , the cell gate 𝐺 , the forget gate 𝐹 ,
and the output gate 𝑂 . The recurrent path is composed of 2 types
of nodes: the cell (𝐶) nodes and the hidden (𝐻 ) nodes. Two types of
non-linear operators are used in the LSTM inference: the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑

for updating the 𝐼 , the 𝐹 , and the 𝑂 , and the 𝑡𝑎𝑛ℎ for updating the
𝐺 and the 𝐶 . Finally, the LSTM output is calculated based on the
weighted sum of the 𝐻 nodes.

Suppose there are 𝑁𝐻 hidden nodes in the LSTM model, the
computation complexity measured in the number of operations is:

𝐶 (𝑁𝐻 ) = 8𝑁 2
𝐻 + 14𝑁𝐻 . (1)

The number of operations on the feedforward path is:

𝐶𝑓 𝑜𝑟𝑤𝑎𝑟𝑑 (𝑁𝐻 ) = 8𝑁 2
𝐻 + 8𝑁𝐻 . (2)

Considering 𝑁𝐻 = 5, the operations executed on the feedforward
path occupies 89% of the total operations.
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Figure 3: Architecture of the LSTM model.

3 PROPOSED METHODS
3.1 LSTM-based Calcium Image Processing
We propose an LSTM-based calcium image processing flow for
efficient online trace extraction, as shown in Fig. 4. The processing
flow consists of the motion correction, the image enhancement,
the fluorescence tracing and the LSTM inference steps. The motion
correction is based on the template matching in our prior work [2],
and we concentrate on the rest of steps in this section.

The image enhancement is realized by subtracting the back-
ground from the denoised image, leaving only the dynamic fore-
ground that reflects the calcium fluorescence generated by the ac-
tive neurons. We use a 3×3 denoise filter to eliminate the black and
pepper noise, and use the morphological opening [12] to estimate
the background of the image.

The fluorescence tracing relies on cell templates extracted by the
CNMF algorithm [18]. We first downsample the enhanced images,
and then apply the cell templates on the subsampled images to
extract the calcium traces according to the Section 2.2.

The LSTM inference is a processing step we proposed to improve
the trace extraction accuracy. During the offline training, the on-
line traces are used as the input and the traces extracted from the
CNMF algorithm are treated as the training target. We carried out
the LSTM training for each cell using the Caffe [9].After the LSTMs
are well trained, they are deployed for the online trace extraction.
The LSTM inference provides results that approximate to the out-
come of the offline CNMF algorithm in accuracy, while significantly
improving the energy efficiency and reducing the latency for the
neurofeedback applications as shown below.

3.2 Bit-Sparse Data Representation
In order to improve the energy efficiency of the LSTM inference, we
propose a bit-sparse data representation for the quantization of the
LSTM model. In the bit-sparse data representation, we define a data
type in which only a limited number of bits can be set to 1. Consid-
ering an n/M bit-sparse data, only n bits can be set to 1 whereas the
n is much smaller than the M. For example, "00010000_00010000"
and "00100100_00000000" are two 2/16 bit-sparse data examples.
The difference between the fixed-point and the bit-sparse data rep-
resentations is that the former one allows all of the bits to be able to
represent 0 or 1 whereas the latter one allows only a few sparsely

distributed bits to own such capability in the representation. Com-
pared to the n-bit fixed-point, the n/M bit-sparse data type can
represent values with a much wider dynamic range. We carried out
the LSTM training by regulating the weights to be 1-8 bits and in
1-8/16 bit-sparse representation, respectively. It turns out that the
trained weights with bit-sparse representation has 24-36 dB wider
dynamic range compared to the fixed-point representation.

We perform the bit-sparse quantization of the LSTM model
through retraining, a fine-tuning process commonly used for the
fixed-point quantization [13]. We quantize all of the weights for
updating the LSTM gates to the bit-sparse data type and keep the
rest of weights as the fixed point. Fig. 5 shows the pseudocode of
the bit-sparse quantization. For each weight to be quantized, we
first extract the sign bit and the amplitude from the weight, and
then we quantize the amplitude of the weight into the M-bit fixed-
point value𝑤𝑖𝑛𝑡 . From the most significant bit (MSB) to the least
significant bit (LSB) of the𝑤𝑖𝑛𝑡 , we count the number of 1s. When
the number reaches n, we round up the value by getting rid of the
rest of bits that have never been counted, and attach the sign bit
back to the data representation. It can be proved that the rounding
process does not increase the number of 1s, so the quantized result
complies with the n/M bit-sparse format.

3.3 Algorithm Evaluation
We evaluated the proposed method with 1000-frame calcium im-
age data recording from the mice. We first employed the CNMF
algorithm to analyze the data recording. We extracted 566 cells
and their corresponding calcium traces as the baseline. Then we
generated the binary masks of the cells and extracted the online
traces based on the binary masks using the method introduced in
Section 2.2. After that, we trained a compact LSTM network (𝑁𝐻
= 5) for each cell by taking the online traces as the input and the
CNMF extracted traces as the training target. The first half of the
recording segment is used as the training set, whereas the whole
segment are used for testing. We adopted the cross correlation as
a measurement to evaluate the similarity between the online and
offline traces. Evaluation results show that 90.3% cell traces have
increases in the cross correlation after employing the LSTM in-
ference, which indicates a pervasive improvement in the calcium
trace extraction accuracy. We identified all 36 cells with a cross
correlation gain over 0.15 and evaluated the accuracy performance
of the bit-sparse data representation on those cells.

We performed the LSTM training under various data representa-
tions: the floating point, 16-bit fixed point and different bit-sparse
data types. For each data type, the LSTMwas trained independently
for 5 times, and then we carried out the LSTM inference and calcu-
lated the cross correlation between the inference results and the
CNMF extracted traces. We recorded the highest cross correlation
score among the 5 trials to avoid occasional non-convergence of
the LSTM training. In addition, we used the sum of the absolute
difference (SAD) as another accuracy measurement. The SAD is
calculated between the CNMF extracted and the LSTM inferenced
traces obtained by the model that has the highest cross correla-
tion score. Fig. 6 shows the averaged cross correlation and SAD
among all identified cells under various data representations. Ac-
cording to the evaluation results, the traces extracted without the
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Figure 4: Proposed LSTM-based calcium image processing flow.

Algorithm 1 Bit-Sparse Quantization

1: procedure
2: weight← original weight
3: n← number of sparse bits
4: M ← number of quantization bits
5: top:
6: sign← sign bit of weight
7: wint← quantize absolute of weight to M-bit
8: i← M− 1
9: count← 0

10: loop:
11: if (wint� i) % 2 = 1 then
12: count← count+ 1.
13: if count = n then
14: wint = ((wint+ (1� (i− 1)))� i)� i.
15: goto end ;

16: i← i− 1.
17: if i = 0 then
18: goto end ;

19: goto loop.
20: end :
21: wint← add sign bit to wint
22: return wint

1

Figure 5: Pseudocode for the bit-sparse quantization.

LSTM inference have relatively low cross correlation scores and
high SAD values, which indicate lower trace extraction accuracy.
The accuracy can be improved by the LSTM inference. In addition,
the accuracy improvement remains as we perform the bit-sparse
quantization for the LSTM inference by adopting the 8/16 down to
the 1/16 bit-sparse data type.

4 CIRCUITS AND ACCELERATORS DESIGN
4.1 BLINK Circuits
Fig. 7 shows the BLINK circuits design. The circuits feature a 1D
array of bit shift operators with an array size (𝑁𝐻+1), which corre-
sponds to the 1 input and 𝑁𝐻 hidden nodes. The bit shift operators
play the same role as conventional multipliers on the feedforward
path since the LSTM weights have been quantized to the 1/16 bit-
sparse data type according to Section 3.3. It reduces the circuit area
and improves the energy efficiency for the LSTM inference.

The recurrent part of the BLINK circuits includes 𝑁𝐻 cell state
registers CReg,𝑁𝐻 hidden state registers HRegs, a temporal register
TReg, a cell state accumulator CAcc, an output accumulator OAcc,
a shared multiplier, multiplexers and demultiplexers, and dedicated
control logic for updating the cell state and the LSTM gates. A
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Figure 7: The BLINK circuits design.

512-entry look-up table (LUT) is used for the non-linear operations.
As the circuits operate, the feedforward and recurrent parts can be
fully pipelined [3], and the consumed number of clock cycles for
each inference can be derived by:

𝐶𝑦𝑐𝑙𝑒 = 5𝑁𝐻 + 2, (3)
where 5 is the cycle count required to update each hidden node,
and 2 indicates the initiation latency of the hidden node update.

We synthesized the circuits with the Synopsys Design Compiler
using a TSMC 28 nmCMOS technology under 1 GHz. The estimated
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Table 1: Reduction on the circuit area and the power con-
sumption by the bit-sparse data representation

16-bit 1/16 bit-sparse
Area (𝜇𝑚2) 46,144 28,289
Power (mW) 24.64 15.19

circuit area and power consumption before and after using the bit-
sparse quantization are shown in Table 1. Using the 1/16 bit-sparse
data type reduces the circuit area and the power consumption by
38.7% and 38.4%, respectively.

4.2 Calcium Image Enhancement Accelerator
The morphological opening has been shown to be effective for
the calcium image enhancement [12]. It estimates the background
of the calcium image from the current frame. The morphological
opening is made up of two consecutive steps, the erosion and the
dilation, and they are defined as:

(𝑓 ⊖ 𝑏) (𝑢, 𝑣) = inf
(𝑥,𝑦) ∈𝐵

[𝑓 (𝑢 + 𝑥, 𝑣 + 𝑦) − 𝑏 (𝑥,𝑦)] (4)

(𝑓 ⊕ 𝑏) (𝑢, 𝑣) = sup
(𝑥,𝑦) ∈𝐵

[𝑓 (𝑢 + 𝑥, 𝑣 + 𝑦) + 𝑏 (𝑥,𝑦)] (5)

where 𝑓 (𝑢, 𝑣) represents the image to be processed and 𝑏 (𝑥,𝑦)
represents the operational template defined in 𝐵 ∈ 𝑁 2. We set
𝑏 (𝑥,𝑦) = 0 so that the erosion/dilation operation can be realized
by calculating local minima/maxima within the template region
𝐵. Assume the size of the 𝐵 is 𝑁𝐾 × 𝑁𝐾 , the complexity of the
morphological opening is

𝐶𝑂𝑃𝐸𝑁 = 2𝐻 ×𝑊 × 𝑁 2
𝐾 (6)

where 𝐻 and𝑊 represent the height and the width of the image.
Fig. 8(a) shows the enhancement accelerator architecture, which

is composed of consecutive denoise accelerator, erosion and dilation
accelerators. The erosion and the dilation are stencil computations
calculating local minima and maxima within an 𝑁𝐾 × 𝑁𝐾 region.
We designed the two-level reduction circuits shown in Fig. 8(b) and
the systolic reduction tree shown in Fig. 8(c) for high computation
performance and low hardware cost.

4.3 Trace Extraction Accelerator
The trace extraction accelerator is designed as a chain of tracing
elements (TEs), each of which is tasked with computing the fluores-
cence value from multiple individual neurons, as Fig. 9 shows. As
the image is streamed through the chain, all of the calcium traces
are extracted based on the 𝑁𝐶 × 𝑁𝐶 templates stored locally at
TEs according to Section 2.2. This tracing accelerator obviates the
need for a separate image buffer, and avoids the inefficient off chip
memory access. The computation time is hidden behind the image
read out at 1 pixel/cycle throughput.

5 EVALUATION
We prototyped the proposed calcium image processing pipeline on
the Ultra96 platform. We set 𝑁𝐾 = 19 and 𝑁𝐶 = 25, and we imple-
mented 32 TEs inside the tracer chain, in which each TE traces 8
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different cells and the tracer chain is reused for 4 times for each
frame. For the LSTM inference, we demonstrated 4 LSTM inference
kernels that can be shared among the calcium trace extraction for
all the cells. Fig. 10(a) shows a breakdown of the FPGA hardware
resource utilization. We implemented the FPGA design in 300 MHz
and compared its performance against the evaluation on the Xeon
E5-2860 CPU using 12 threads. As Fig. 10(b) shows, the enhance-
ment and the trace extraction accelerators achieve 18.1x and 2.4x
speedup over the multicore CPU. Fig. 10(c) shows the runtime and
the latency of executing the proposed pipeline on the FPGA. Since
the motion correction and a large part of the enhancement can
be overlapped with the image sensor read out, the latency can be
reduced to 764 𝜇s from the 2-ms runtime. The measured power
consumption of the FPGA implementation is 7.2 W, which reduces
the power consumption of the CPU by 88%.

We evaluated the performance and the energy efficiency of the
BLINK circuits, and compared it against the evaluation on the Xeon
E5-2860 CPU with 16 threads using the OpenMP and the evaluation
on the V100 GPU using the CUDA. The BLINK circuits achieve 37.0
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M inference/s performance and 410 pJ/inference energy efficiency,
which outperforms the evaluation on the CPU by 10.4x in perfor-
mance and outperforms the evaluations on the CPU and the GPU
by 6293x and 52.4x gain in energy efficiency, respectively.

6 RELATEDWORK
6.1 Efficient LSTM inference Accelerator
Various approaches have been proposed for the energy efficient
LSTM/RNN inference accelerators [3, 4, 6, 7, 11, 13, 15–17]. [6] de-
signed a low power LSTM accelerator for the keyword spotting
under 5 µW with 60 nJ/inference energy efficiency. [15] realized
the LSTM implementation in the spike domain, and mapped the
LSTM inference onto the TrueNorth neuromorphic processors. [3]
designed a compact LSTM inference kernel by fully pipelining the
forward and recurrent paths. [4] took advantage of the temporal re-
dundancy of the gated recurrent unit and enabled zero-skipping. [7]
and [17] proposed pruning and structured compression to improve
both the performance and the energy efficiency. [16] improved the
temporal locality of the LSTM weights by separating forward and
recurrent paths and increasing the reuse rate of the LSTM weights.
[11] used the stochastic computing to improve the energy efficiency
of the RNN inference. [13] leveraged the coarse grained parallelism
by taking advantage of the column-wise multiplication. This paper
proposes the bit-sparse data representation to simplify the multi-
plication into the bit shift, and it can be used in perpendicular with
previous optimization strategies in improving the energy efficiency
of the LSTM inference.

6.2 Efficient Online Calcium Image Processing
Most existing pipelines for the calcium image processing [12, 18]
require the bulk image processing only suitable for the offline anal-
ysis. [18] achieved the real-time calcium image processing in terms
of throughput, but it does not guarantee short processing latency
and high energy efficiency for closed-loop feedback applications.
[12] took advantage of the LSTM inference for the cell detection.
This paper uses the LSTM inference to approximate the offline trace
extraction with high accuracy. The proposed method enables high
energy efficiency and short latency calcium image processing and
is suitable for neurofeedback devices.

7 CONCLUSION
In this paper, we propose the bit-sparse data representation for
the LSTM inference for the trace extraction from calcium images.
This method improves the energy efficiency of the LSTM inference
by turning the multiplication into the bit shift operation while
remaining the inference accuracy. Based on thismethod, we propose
a customized pipeline for the real-time calcium image processing,
and it has the potential to be used as an energy-efficient single-
device solution for closed-loop neurofeedback devices.
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