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Abstract—Accelerator-rich architectures (ARAs) provide
energy-efficient solutions for domain-specific computing in the
age of dark silicon. However, due to the complex interaction
between the general-purpose cores, accelerators, customized on-
chip interconnects, customized memory systems, and operating
systems, it has been difficult to get detailed and accurate eval-
uations and analyses of ARAs on complex real-life benchmarks
using the existing full-system simulators. In this paper we develop
the ARACompiler, which is a highly automated design flow
for prototyping ARAs and performing evaluation on FPGAs.
An efficient system software stack is generated automatically to
handle resource management and TLB misses.We further provide
application programming interfaces (APIs) for users to develop
their applications using accelerators. The flow can provide 2.9x
to 42.6x evaluation time saving over the full-system simulations.

I. INTRODUCTION

The current multi-core scaling may not sustain due to
the power limit on a single device [1]. Accelerator-rich ar-
chitectures are attractive alternatives to achieve both high-
performance and low-power requirements by offloading the
computation from general-purpose CPUs to accelerators. The
important question we try to address in this paper is how to
evaluate accelerator-rich architectures (ARAs) accurately and
efficiently. The question can be divided into two parts: (1)
accurate modeling of an ARA, and (2) efficient evaluation of
an ARA on real workloads with OS interactions.

Most existing studies try to modify the state-of-the-arts
full-system simulators for ARA evaluation. However, this
approach has multiple drawbacks. First, current full-system
simulators are designed to model general-purpose processors.
However, the memory system, including both the memory
hierarchy and the network-on-chip in an ARA, are usually
quite different from CPU architectures. In particular, the ARA
memory system is customized to provide fast on-chip accesses
and sufficient aggregate on-chip/off-chip bandwidth to meet
the high throughput demand from accelerators. It is difficult to
accurately model and specify the memory system of an ARA
based on current full-system simulators, e.g. [2][3], without
significant modifications. Second, the speed of full-system
simulation is slow. For example, gem5 [2] and Flexus [3] can
achieve up to 300 KIPS in the detailed CPU mode and 3MIPS
in the fast-forwarding mode. It is still about a 1000x slowdown
compared to native execution (2GIPS). In this paper we discuss
our design of a highly automated prototyping flow, called
Accelerator-Rich Architecture Compiler (ARACompiler), to
prototype our ARAs on a modern FPGA-SoC.

II. ACCELERATOR-RICH ARCHITECTURES AND
PROTOTYPING PLATFORM

Figure 1 is an overview of an ARA. An ARA contains two
planes: (1) the accelerator plane and (2) the processor plane.

From a system perspective, the user applications are launched
in the processor plane and offload the computation-intensive
tasks to the accelerator plane. The system software stack acts
as the interface between the two planes. It provides the services
of reservations, starts, and releases for the accelerators. The
software stack is implemented in the privileged mode and
transparent to users. In addition, the TLB misses issued from
the accelerators are handled in the software.

Fig. 1. ARA overview: accelerator plane and processor plane

We choose the Xilinx Zynq ZC706 evaluation board as our
underlying prototyping platform. ZC706 has a Zynq SoC with
1GB on-board DRAM. A Zynq SoC is composed of a dual-
core ARM Cortex-A9 and FPGA fabrics, which can be used
to implemente accelerators and ARA memory system. The
system software stack and user applications can be launched
on the ARM processor with Linux support.

III. ARACOMPILER DESIGN AUTOMATION FLOW

The main challenges to architecture exploration through
hardware prototyping is the long development cycle of each
generation of ARA, requiring extensive coding in HDL. To
overcome this, we provide an design automation flow, similar
to the approach used in [4], with the following features: (1)
high-level ARA specification file, (2) accelerator development
using high-level synthesis tools, and (3) highly parameterized
hardware templates for ARA memory system generation.

First, the ARA specification file is provided for users
to specify components and configure the parameters in the
accelerator plane. Users can easily design and evaluate their
new accelerators to the reusable baseline prototype or perform
design space exploration. Second, high-level synthesis tools,
such as Vivado HLS, enable automatic synthesis from high-
level specifications in C to low-level cycle-accurate RTL
codes. We provide a standardized accelerator interface in HLS-
compatible C to shorten the accelerator design cycle for users.
Third, we provide a highly parameterized hardware templates



for ARA memory system generation to remove this burden
from users. Figure 2 shows our design automation flow.

Fig. 2. ARACompiler design automation flow

IV. ARA SYSTEM SOFTWARE STACK

Figure 3 shows the ARA system software stack. ARACom-
piler can automatically generate the related software modules
based on the ARA specification file. The four major compo-
nents in the system software stack are: (1) global accelerator
manager (GAM), (2) dynamic buffer allocator (DBA), (3) TLB
miss handler, and (4) coherence manager. GAM is responsi-
ble for (1) interfacing with user applications, (2) accelerator
resource management and task scheduling, and (3) requesting
for buffer resource. User applications can talk to GAM with
the provided APIs. DBA receives the task requests from GAM
and then allocate the shared buffer resources for the requests.
A starvation-free buffer allocation policy is provided by default
for DBA. We use a software-based TLB miss handler in
ARACompiler. IOMMU groups multiple TLB misses together
and sends them to the miss handler at once to reduce the
performance overhead. When a user directly write accelerator
data to off-chip DRAM instead of the coherent L2 cache for
higher memory bandwidth, the overlapping pages residing in
L2 are invalidated by the coherence manager.

Fig. 3. System software stack and the interactions with the ARA and user
applications

V. ARA APPLICATION PROGRAMMING INTERFACES

ARACompiler can generate the header file of accelerator
APIs for programmers automatically by using the informa-

tion of ARA specification file. For each type of accelerator,
we provide APIs: (1) reserve(), (2) check reserved(), (3)
send param(), (4) check done(), and (5) free(). Users can
develop their applications with the C++ classes and member
functions to manipulate the accelerator in the ARA.

VI. ARACOMPILER FLOW RUNTIME

Figure 4 provides the runtime comparison of (1) application
execution time on the ARA prototype, (2) ARACompiler flow
and prototype construction time, and (3) full-system simulation
time collected from [5]. Xilinx synthesis flow contributes more
than 97% of total runtime of (2). Even with such slow synthesis
time, our flow can save 2.9x to 42.6x evaluation time over the
full-system simulations. The saving becomes larger when the
input sizes grow.

Fig. 4. Runtime comparison: (1) application execution time on the ARA
prototype, (2) ARACompiler flow, and (3) full-system simulation [5]

VII. CONCLUSIONS

We propose ARACompiler, which is a high automated
prototyping flow to generate ARAs on FPGA. Designers can
easily integrate their accelerator designs with our reusable
and highly parameterized hardware templates to customize the
shared memory system. Furthermore, we provide a system
software stack and user APIs for designers to develop and
evaluate their applications on the prototype. We believe ARA-
Compiler can be an attractive alternative for ARA evaluation.
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