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Abstract 
IYe discuss a new minimum density objectave for  

spanning and Steaner tree constructaons. This formu- 
latzoii is motzvated b y  the need for balanced usage of 
routang resources t o  achaeve iiztnzmum-area VLSI lay- 
outs. We present eficient heunstzcs for constructnng 
low-density spaniazng trees, and prove that their out- 
puts are on average wafhzn small constants of optimal 
with respeci to both tree weaght and density. The man- 
m u m  densaty objectave can be transparently combzned 
wi f l i  a number of previous aniercoiinectzon objectaves 
( e .  y , inmania~zng radaus or skew), wzthout aflectzng 
t h e  solutaon qualtty wath respect t o  these prevaous met- 
racs Extensave samulataon results suggest that applt-  
cations t o  VLSI global routzng are promasang. 

1 Introduction 
\Ve address a. new minimum density objective for 

spalining a i d  Steiiier tree constructions in the Man- 
hatta,n plane. Our work is motivated by the area inin- 
iiiiizatioii requirement inherent in the global routing 
phase of VLSI layout (the global routing phase entails 
construction of spanning or Steiiier interconnection 
trees over prescribed point sets, or signal nets; see [13] 
for a survey). Traditionally, the minimum-area objec- 
tive has been approximately captured by minimizing 
the total edgelength in the tree: since wires have a 
fixed width and must be routed at  a fixed separation 
froin each other, the total tree edgelength provides an 
obvious lower bound on t,he routing area that must be 
iicldecl t,o tlie layout. However, the grid-based struc- 
t tire of integrated circuit, rout,ing resources provides 
additional information for determining the iinpact of 
i3 given iiiterconiiect,ion t,opology on t.he chip area.. 

1.1 Problem Foriiiulation 
For tlie four-t.eriiiina1 signal net shown in Fig. 1, the 

iiit,ri.coniiect,ioii t,ree of Fig. l ( a )  forces a t  least three 
n-ircs t,o cross t.li(. claslicd line, meaning that the hori- 
zont,al dinit:nsion of t,lie chip must increase by enough 
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to accommodate these three rouling grids.' In con- 
trast, the tree of Fig. l(b) forces the horizontal chip 
dimension to  grow by only one routin grid (however, 
the vertical chip dimension will grow %y two grids, as 
indicated by the horizontal dashed line). In view of 
manufacturing constraints on the maximum chip di- 
mension, the most effective layouts are generally those 
which are roughly square, and this suggests balancing 
the horizontal and vertical routing requirements in- 
duced by the interconnection tree. As a result, we 
formulate the Minimum Density Interconnection Tree 
problem as follows. 

(a) (b) 

Figure 1:  A four-point example for which tree 
(a) has density 3, but tree (b) has density 2. 

A signal net N is a set of n terminals, 
p l , p z , . .  . ,pn E N in the Manhattan plane, with one 
terminal identified as a source and the rest as sinks. 
An interconnection tree of a net N ,  denoted T ( N ) ,  is 
a tree which spans N .  The cost of a routing tree T is 
the sum of the costs of its edges, where the cost of an 
edge is the Manhattan distance between its endpoints. 
Without loss of generality, we assume that the termi- 
nal coordinates are scaled so that the entire signal net 
lies within the unit square. 
Defi The density of an interconnection tree is the 
maximum number of tree edges properly intersected2 
by any horizontal or vertical line in the plane. 

'We adopt "routing grid" as a generic term independent 
of layout methodology. The term encompasses, e.g., vertical 
feedthroughs or horizontal routing tracks in a channel [13]. 

2 A  line properly  intersects an edge if and only if it intersects 
the edge at a single point. 



Def: For a given net NI the minimum density of N is 
the minimum density achievable by an interconnection 
tree T ( N ) ,  and a minimum density interconnection 
tree is any T ( N )  that achieves this density. 
We will address the following: 
Minimum Density Interconnection Tree (MDIT)  
Problem: Given a net, N ,  find a minimum density in- 
terconnection tree T ( N )  that has minimum cost. 

1.2 Related Formulations 
A number of alternative interconnection objectives 

trees have been examined in the VLSI CAD literature, 
motivated by issues of system 
mizing the total tree cost (this 
the wiring in addition to  chip area), (ii) minimizing the 
maximum source-sink tree pathlength, i.e., tree radius 
(this reflects the maximum signal delay, particularly 
for newer interconnect technologies such as those in 
multi-chip module pa.ckages [SI), and (iii) minimizing 
the ma.xiinum difference, or skew, between source-sink 
pathlengths (this reflects the clock skew minimization 
problem. 

Each of these objectives has engendered an exten- 
sive literature: the first corresponds to  the minimum 
rectilinear Steiner tree problem [9] [la], the second has 
been trea,ted in the “bounded-radius, bounded-cost” 
interconnection tree algorithms of [2 [4 [5] [6 , and 
the third has been studied in, e.g., 131 /IO] [Ill [14]. 
We make note of these existing formu ations because 
our proposed algorithms for minimum-density inter- 
connection trees afford unique multiple optimizations 
wherein more than one competing objective may be 
addressed simultaneously, as discussed below. 

2 Heuristics for MDIT 
\lie assume that there are exactly n = le2 terminals, 

and tliat all 2 and y coordinates of the terminals are 
distinct. 

2.1 The COMB Construction 
Our first algorithm partitions the terminals of net 

hr into $ vertical strips, each containing termi- 
nals (Fig. 2a). We connect all the terminals in each 
strip in order of decreasing y coordinate (Fi 2b), 
and then form a routing tree by joining the t o t t o m  
terminals of all strips from left to right (Fig. 2c). 

(4 (b) (C) 

Figure 2: Sample execution of COMB. 

(4 (b) (4 
Figure 3: Sample execution of COMB-ST. 

If the introduction of Steiner points is allowed, we 
reduce the worst-case density as well as the worst- 
case cost of our construction via the following method: 
(i) partition the net N into 3 vertical strips, each 
containing 6 terminals (Fig. 3a); (ii) connect all 
the terminals in each strip to a central spine3 within 
the strip (Fig. 3b); then (iii) join all the spines usin 
segments of a single horizontal line (Fig. 3c). We cafi 
this variant COMB-ST. 

2.2 A Chain Peeling Method 
A different, “chain-peeling” approach to density 

minimization iteratively computes and superposes 
chains or antichains. A chain is a sequence of termi- 
nals with coordinates that are monotone increasing in 
both x and y; an antichain has coordinates monotone 
increasing in x and monotone decreasing in y. A con- 
sequence of Dilworth’s theorem [7] is that, a point set 
of size n must contain either a chain or an antichain 
of size at least fi. 

Our chain-peeling method, which we call PEEL, 
efficiently detects a maximal chain or antichain and 
then removes it from the net; the process is iterated 
over the remaining terminals until the net has been 
covered. The chains and antichains are then connected 
into a routing tree without increasing density. The 
PEEL method is attractive because it escapes such 
pathological examples as that of Fig. 4, where COMB 
or COMB-ST will yield density an unbounded factor 
greater than that of PEEL. 

3 Performance Bounds 
We can show that both the density and the total 

cost of our constructions are on average only small 
constant factors away from optimal. Proofs are omit- 
ted for brevity but may be found in [l]. 
Density: A lower bound of S 2 ( f i )  can be established 
for the worst-case minimum density of a spanning tree 
T ( N ) :  

Theorem 3.1 A net o f n  terminals at the gn’d points 
of a (fi - 1) x (fi - 1) grid cannot be spanned by an 
interconnection tree having density < [*I. 

3 A  $pine is the vertical line which passes through the median 
terminal (ordered by x coordinate) of the strip. 
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Figure 4: Class of instances (a) for which PEEL 
performance (b) is an unbounded factor better 
than that of COMB or COMB-ST (c). The con- 
necting edges between the strips are not shown in 
(c). For points in a n  “X” configuration, PEEL 
always yields constant density = 2, while the 
COMB or COMB-ST density will grow as the 
square root of 11.  

Theorem 3.2 For n termanals chosen from a una- 
forin dastrzbutzon an the unzt square, the MDIT has 

Theorem 3.3 Algorithms COMB, COMB-ST and 
PEEL construe1 lrees T ( N )  with densitzes a i  most 

0 

expected densaty e(+). 0 

6, $ + 1 and 2 f i  respectively. 

Cost:  Probabilistic arguments can be used to show 
that, on average, all of our heuristics will produce in- 
terconnection trees with low cost. 

Theorem 3.4 For n ternzznals chosen from a una- 
forin distrzbutzon a n  thr unzt square, the expected cost 

0 
Tlworeiii 3.5 Algorithms COMB, COMB-ST and 
PEEL construct trees T ( N )  uuth costs at most 2 6 ,  

0 
Corol lary 3.6 For 11 terminals chosen from a unt- 
form distributaoii zii the unzt square, algorzthms 
CO,\IB, C O M B S T  and PEEL a l l  construct trees 
iuhiclr on average have both denszty and cost bounded 

0 by con stair Is iain es opta i n  al. 

of ~ h c  niinimiiin spannrng tree 2s O(fi). 

fi+ 1 ai id  4f i ,  respecttvely. 

Coiuplexi ty  : 
Tlieorein 3.7 Algorithms COMB, COMB-ST and 
PEEL have tune complexztaes O(n logn), O(n logn), 

0 ai id  0 ( n 3  loglog n ) ,  respectzvely. 

4 Triple Optimizations 
For practical VLSI routing applications, it is often 

clesirablr to minimize iiiore than one objective func- 
tion a t  once. However, it is usually difficult to  treat 
even two coiiipet ing iiteasures effectively. We now 
sliow that the minimum-density objective is “com- 
patihle” with existing performance-driven routing ob- 
jectives, rnabling simultaneous consideration of up to 
t lire(. separate routing tree measures. 

The work of [ll] gives an iterative matching-based 
clock tree construction that minimizes skew while 
keeping total wirelength within a constant factor of 
optimal on average, and bounded by O ( 6 )  always. 
To construct clock trees with low density, we use a 
variant of COMB to obtain geometric matchings with 
low density. Using fi strips and joining them in a ser- 
pentine fashion yields our so-called COMB-SERP tour 
which has cost and density both bounded by O(fi) 
in the worst case4 The odd-numbered edges of this 
tour will constitute a geometric matching having both 
cost and density bounded by O ( f i  . We employ this 
construction within the method of ill] to yield clock 
routing trees that simultaneously address three mea- 
sures: pathlength skew, total wirelength and density, 
with the last two quantities both bounded on average 
by constants times optimal. 

Another example of a triple optimization is ob- 
tained if we combine the bounded densit formula- 
tion with the BRBC cost-radius tradeoff off6]. BRBC 
starts with a low-cost tour of the net terminals (e.g., 
a depth-first tour of a minimum spanning tree), and 
then augments this tour by adding shortest paths 
to  the source from certain regularly spaced locations 
along this tour. The algorithm returns the shortest- 
paths tree over the resulting augmented graph. By 
using COMB-SERP as its initial tour, BRBC will con- 
struct a routing tree with radius bounded by (1 +c) .R ,  
cost bounded by (1 + ?) . 2 6 ,  and density bounded 
by (1 + A) . 2 f i ,  where R 5 2 is the maximum 
distance from the source to  the farthest sink and 6 
is a user defined parameter. These expressions imply 
average-case performance within constant factors of 
optimal for all three objectives, and the radius bound 
also holds in the worst case. 

5 Experimental Results 
We have implemented COMB, COMBST,  and 

PEEL using ANSI C in the Sun environment. For each 
pointset cardinality, each algorithm was executed on 
100 pointsets chosen randomly from a uniform distri- 
bution in the unit square. We computed the minimum, 
average, and maximum densities and costs of the re- 
sulting interconnection trees (see Tables 1 and 2). The 
average density of the tree produced by COMB is 
on par with the density of the minimum spanning 
tree, but the density of the minimum spanning tree 
has considerably higher variance. Thus, the COMB 
or COMB-SERP constructions may be desirable for 
their predictable performance. From the tables, we see 
that the average density of the trees produced by the 
COMB-ST algorithm is considerably better than the 
average density of the corresponding minimum span- 
ning trees: for example, for [NI = 10, COMB-ST 
yields trees with average density 3.00, while the av- 
erage minimum spanning tree density is 3.82. This 
21% decrease in average density is achieved with a 

‘For example, the first/second strips of F i g . 2 ~  would be con- 
nected using their topmost points, and the second/third using 
their lowest points. The first and last points in the serpentine 
ordering are connected to yield the tour. 
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corresponding 21% increase in the tree cost over MST 
cost. Note that in the extended version of this work 
[I], we present a “computational lower bound” for a 
given problem instance. The method divides the unit 
square into an i by j (not necessarily uniform) rect- 
angular grid such that the greatest number P of the 
resulting i j rectangles contain terminals. In order 
for the tree to  be connected, a tree edge must cross 
the boundary of each rectangle which contains a ter- 
minal. From simple counting arguments, we deduce a 
lower bound of for the density of any tree for 
the given problem Instance. Using this lower bound, 
we find that COMB-ST constructs a tree with opti- 
mal density in 164 of the 200 instances for n = 3 and 
n = 5 .  Moreover, the COMB-ST outputs averaged 
within a factor of two of optimal for R 5 100. 

2.97 2.66 

Table 1: Tree density statistics for niiniinuin spanning 
tree and the two heurist.ic constructions. Avera.ges are 
taken over IO0 instances for each net size. 

net MST 1 PEEL I C O M B S T  

3 I 1103.66 I 136.12 I 1164.96 
l ire  ave I ave ] .“e 

1 pi 1 3789.89 1 4720.69 1 4823.03 1 
100 8384.32 14717.75 11083 93 
300 14318.59 28960 4 4  18681 10 

4 6 5 1  00 6318.P7 6570.46 
5945.4 7 9298.73 8029.99 

Table 2: Tree cost statistics. ?Ve omit the 
connecting the chains and antichains in  PEEL, 
t,he PEEL cost ma,y be lower than MST cost. 

cost of 
so that 

6 Coiiclusioiis and Future Work 
We have proposed a new spanning and Steiner tree 

forinulation based on a. minimum density criterion. 
We ha.ve also presented several efficient heuristics for 
constructing low-density trees. The average perfor- 
iiiaiice of all our algorithms is within constant fac- 
tors of optiiiial in  terms of both tree cost and den- 
sity. Our techniques can also be used to  unify the new 
deiisity criterion with previous “performalice-driven” 
int,ercniiriection objectives in order t,o achieve siniulta- 
neous opt,imization of up t’o three coinpeting intercon- 
nect.ioii tree measures. Extensive simulations indicate 
that, our approa.ches are effective in practice, and hold 
promise for applications to balanced-resource routing 
in \‘LSI layout. 

It is still open whether there exists a polynomial- 
time algorithm that constructs a routing tree with 
both cost and density bounded by constants times 
optimal in the worst case, and whether the MDIT 
problem is NP-complete. Recall that PEEL holds 
promise in that there exist examples where it outper- 
forms COMB and COMBST by a factor of O ( 6 )  
(Fig. 4); we conjecture that PEEL can be shown to 
yield worst-case density that is within a constant fac- 
tor of optimal. In fact, we offer two closely related 
conjectures: (i) that the minimum density of a span- 
ning tree over net N is at least the minimum of the 
number of chains or the number of antichains needed 
to  cover N ;  and (ii) that the PEEL algorithm will use 
at  most two times the minimum possible number of 
chains/antichains that cover N .  
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