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Abstract

We discuss a new minimum density objective for
spanning and Steiner tree constructions. This formu-
lation is motivated by the need for balanced usage of
routing resources to achieve minimum-area VLSI lay-
outs. We present efficient heuristics for constructing
low-density spanning trees, and prove that their out-
puts are on average within small constants of optimal
with respect to both tree weight and density. The min-
tmum density objective can be transparently combined
with a number of previous interconnection objectives
(e.g., minimizing radius or skew), without affecting
the solution quality with respect to these previous met-
rics. Extensive simulation results suggest that appli-
cations to VLSI global routing are promising.

1 Introduction

We address a new minimum density objective for
spanning and Steiner tree constructions in the Man-
hattan plane. Our work is motivated by the area min-
imization requirement inherent in the global routing
phase of VLSI layout (the global routing phase entails
construction of spanning or Steiner interconnection
trees over prescribed point sets, or signal nets; see [13]
for a survey). Traditionally, the minimum-area objec-
tive has been approximately captured by minimizing
the total edgelength in the tree: since wires have a
fixed width and must be routed at a fixed separation
from each other, the total tree edgelength provides an
obvious lower bound on the routing area that must be
added to the layout. However, the grid-based struc-
ture of Integrated circuit routing resources provides
additional information for determining the impact of
a given interconnection topology on the chip area.

1.1 Problem Formulation

For the four-terminal signal net shown in Fig. 1, the
interconnection tree of Fig. 1(a) forces at least three
wires to cross the dashed line, meaning that the hori-
zontal dimension of the chip must increase by enough
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to accommodate these three routing grids.! In con-
trast, the tree of Fig. 1(b) forces the horizontal chip
dimension to grow by only one routing grid (however,
the vertical chip dimension will grow %y two grids, as
indicated by the horizontal dashed line). In view of
manufacturing constraints on the maximum chip di-
mension, the most effective layouts are generally those
which are roughly square, and this suggests balancing
the horizontal and vertical routing requirements in-
duced by the interconnection tree. As a result, we
formulate the Minimum Density Interconnection Tree
problem as follows.
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Figure 1: A four-point example for which tree
(a) has density 3, but tree (b) has density 2.

A signal net N is a set of n terminals,
P1,P2,...,Pn € N in the Manhattan plane, with one
terminal identified as a source and the rest as sinks.
An interconnection tree of a net N, denoted T(N), is
a tree which spans N. The cost of a routing tree T is
the sum of the costs of its edges, where the cost of an
edge is the Manhattan distance between its endpoints.
Without loss of generality, we assume that the termi-
nal coordinates are scaled so that the entire signal net
lies within the unit square.

Def: The density of an interconnection tree is the

maximum number of tree edges properly intersected?
by any horizontal or vertical line in the plane.

1We adopt “routing grid” as a generic term independent
of layout methodology. The term encompasses, e.g., vertical
feedthroughs or horizontal routing tracks in a channel [13].

2A line properly intersects an edge if and only if it intersects
the edge at a single point.



Def: For a given net N, the minimum density of N is
the minimum density achievable by an interconnection
tree T(N), and a minimum density interconnection
tree is any T(N) that achieves this density.

We will address the following:

Minimum Density Interconnection Tree (MDIT)
Problem: Given a net N, find a minimum density in-
terconnection tree 7(N) that has minimum cost.

1.2 Related Formulations

A number of alternative interconnection objectives
trees have been examined in the VLSI CAD literature,
motivated by issues of system performance: (i) mini-
mizing the total tree cost (this reflects the RC delay of
the wiring in addition to chip area), (ii) minimizing the
maximum source-sink tree pathlength, i.e., tree radius
(this reflects the maximum signal delay, particularly
for newer interconnect technologies such as those in
multi-chip module packages [8]), and (iii) minimizing
the maximum difference, or skew, between source-sink
pathlengths (this reflects the clock skew minimization
problem.

Each of these objectives has engendered an exten-
sive literature: the first corresponds to the minimum
rectilinear Steiner tree problem [9] [12], the second has
been treated in the “bounded-radius, bounded-cost”
interconnection tree algorithms of [2] [4] [5] [6], and
the third has been studied in, e.g., 3} 10] [11] [14].
We make note of these existing formulations because
our proposed algorithms for minimum-density inter-
connection trees afford unique multiple optimizations
wherein more than one competing objective may be
addressed simultaneously, as discussed below.

2 Heuristics for MDIT

We assume that there are exactly n = k? terminals,
and that all £ and y coordinates of the terminals are
distinct.

2.1 The COMB Construction
Qur first algorithm partitions the terminals of net

N into ¥z vertical strips, each containing v/2n termi-
5 g

nals (Fig. 2a). We connect all the terminals in each
strip in order of decreasing y coordinate (Fig. 2b),
and then form a routing tree by joining the %ottom
terminals of all strips from left to right (Fig. 2¢).

@ (b) ©

Figure 2: Sample execution of COMB.
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Figure 3: Sample execution of COMB_ST.

If the introduction of Steiner points is allowed, we
reduce the worst-case density as well as the worst-
case cost of our construction via the following method:

(i) partition the net N into % vertical strips, each

containing v2n terminals (Fig. 3a); (i) connect all
the terminals in each strip to a central spine® within
the strip (Fig. 3b); then (iii) join all the spines usin
segments of a single horizontal line (Fig. 3c). We caﬁ
this variant COMB_ST.

2.2 A Chain Peeling Method

A different, “chain-peeling” approach to density
minimization iteratively computes and superposes
chains or antichains. A chain is a sequence of termi-
nals with coordinates that are monotone increasing in
both z and y; an antichain has coordinates monotone
increasing in ¢ and monotone decreasing in y. A con-
sequence of Dilworth’s theorem (7] is that a point set
of size n must contain either a chain or an antichain
of size at least /0.

Our chain-peeling method, which we call PEEL,
efficiently detects a maximal chain or antichain and
then removes it from the net; the process is iterated
over the remaining terminals until the net has been
covered. The chains and antichains are then connected
into a routing tree without increasing density. The
PEEL method is attractive because 1t escapes such
pathological examples as that of Fig. 4, where COMB
or COMBL.ST will yield density an unbounded factor
greater than that of PEEL.

3 Performance Bounds

We can show that both the density and the total
cost of our constructions are on average only small
constant factors away from optimal. Proofs are omit-
ted for brevity but may be found in [1].

Density: A lower bound of §2(1/n) can be established

for the worst-case minimum density of a spanning tree
T(N):

Theorem 3.1 A net of n terminals at the grid points
of a (\/n—1) x (v/n—1) grid cannot be spanned by an
interconnection tree having density < [3@] 8

3A spineis the vertical line which passes through the median
terminal (ordered by x coordinate) of the strip.
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Figure 4: Class of instances (a) for which PEEL
performance (b) is an unbounded factor better
than that of COMB or COMB_ST (c). The con-
necting edges between the strips are not shown in
(c). For points in an “X” configuration, PEEL
always yields constant density = 2, while the
COMB or COMBL_ST density will grow as the
square root of n.

(@)

Theorem 3.2 For n terminals chosen from a un:-
form distribution in the unit square, the MDIT has
expected density O(v/n). )

Theorem 3.3 Algorithms COMB, COMB_ST and
PEEL construct trees T(N) with densities at most

V2n, 3\% + 1 and 2\/n respectively. )

Cost: Probabilistic arguments can be used to show
that on average, all of our heuristics will produce in-
terconnection trees with low cost.

Theorem 3.4 For n terminals chosen from a uni-
form distribution in the unit square, the expected cost
of the minsmum spanning tree is ©(\/n). Ol

Theorem 3.5 Algorithms COMB, COMB_ST and
PEEL construct trees T(N) with costs at most 2v/2n,

V2 4+ 1 and 4,/n, respectively. O

Corollary 3.6 For n i{erminals chosen from a uni-
form distribution in the unit square, algorithms
COMB, COMB_ST and PEEL all construct trees
which on average have both density and cost bounded
by constants times optimal. O

Complexity:

Theorem 3.7 Algorithms COMB, COMB.ST and
PEEL have time complezities O(nlogn), O(nlogn),

and O(n? loglog n), respectively. 0

4 Triple Optimizations

For practical VLSI routing applications, it is often
desirable to minimize more than one objective func-
tion at once. However, it is usually difficult to treat
even two competing measures effectively. We now
show that the minimum-density objective is “com-
patible” with existing performance-driven routing ob-
Jectives, enabling simultaneous consideration of up to
three separate routing tree measures.
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The work of [11] gives an iterative matching-based
clock tree construction that minimizes skew while
keeping total wirelength within a constant factor of
optimal on average, and bounded by O(\/n) always.
To construct clock trees with low density, we use a
variant of COMB to obtain geometric matchings with
low density. Using /n strips and joining them in a ser-
pentine fashion yields our so-called COMB_SERP tour
which has cost and density both bounded by O(y/n)
in the worst case.* The odd-numbered edges of this
tour will constitute a geometric matching having both
cost and density bounded by O(y/n). We employ this
construction within the method of [11] to yield clock
routing trees that simultaneously address three mea-
sures: pathlength skew, total wirelength and density,
with the last two quantities both bounded on average
by constants times optimal.

Another example of a triple optimization is ob-
tained if we combine the bounded density formula-
tion with the BRBC cost-radius tradeoff of [6]. BRBC
starts with a low-cost tour of the net terminals (e.g.,
a depth-first tour of a minimum spanning tree), and
then augments this tour by adding shortest paths
to the source from certain regularly spaced locations
along this tour. The algorithm returns the shortest-
paths tree over the resulting augmented graph. By
using COMB_SERP as its initial tour, BRBC will con-
struct a routing tree with radius bounded by (1+¢)- R,
cost bounded by (1+ 2)- 2v/2n, and density bounded
by (1 + %) - 2y/n, where R < 2 is the maximum
distance from the source to the farthest sink and ¢
is a user defined parameter. These expressions imply
average-case performance within constant factors of
optimal for all three objectives, and the radius bound
also holds in the worst case.

5 Experimental Results

We have implemented COMB, COMB.ST, and
PEEL using ANSI C in the Sun environment. For each
pointset cardinality, each algorithm was executed on
100 pointsets chosen randomly from a uniform distri-
bution in the unit square. We computed the minimum,
average, and maximum densities and costs of the re-
sulting interconnection trees (see Tables 1 and 2). The
average density of the tree produced by COMB is
on par with the density of the minimum spanning
tree, but the density of the minimum spanning tree
has considerably higher variance. Thus, the COMB
or COMB_SERP constructions may be desirable for
their predictable performance. From the tables, we see
that the average density of the trees produced by the
COMB.ST algorithm is considerably better than the
average density of the corresponding minimum span-
ning trees: for example, for |[N| = 10, COMB.ST
yields trees with average density 3.00, while the av-
erage minimum spanning tree density is 3.82. This
21% decrease in average density is' achieved with a

4For example, the first /second strips of Fig.2¢c would be con-
nected using their topmost points, and the second/third using
their lowest points. The first and last points in the serpentine
ordering are connected to yield the tour.



corresponding 21% increase in the tree cost over MST
cost. Note that in the extended version of this work
(1], we present a “computational lower bound” for a
given problem instance. The method divides the unit
square into an i by j (not necessarily uniform) rect-
angular grid such that the greatest number P of the
resulting ¢ - j rectangles contain terminals. In order
for the tree to be connected, a tree edge must cross
the boundary of each rectangle which contains a ter-
minal. From simple counting arguments, we deduce a

lower bound of [ifjf' 1.7 for the density of any tree for
the given problem instance. Using this lower bound,
we find that COMB_ST constructs a tree with opti-
mal density in 164 of the 200 instances for n = 3 and
n = 5. Moreover, the COMB_ST outputs averaged

within a factor of two of optimal for n < 100.

net MST PEEL COMB.ST
size min/max ave min/max ave min/msx ave
3 1/% T.65 172 1.69 i/1 1.00
5 2/4 2.57 2/2 2.00 2/2 2.00
T 2/5 2.87 2/3 2.66 3/3 3.00
10 2/6 3.82 2/4 3.08 3/3 s.00
15 3/8 4.35 3/5 3.93 3/3 3.00
20 1/8 4.98 1/6 1.78 4/4 4.00
30 4/8 5.99 5/7 5.88 5/% 5.00
50 5/10 711 T/9 7.85 6/5 6.00
100 7/12 9.48 10/13 11.48 8/8 8.00
300 12/17 14.59 19/22 20.69 13/13 13.00
Table 1: Tree density statistics for minimum spanning

tree and the two heuristic constructions. Averages are
taken over 100 instances for each net size.

nei MST PEEL COMB.ST
aixe ave ave ave

3 13103.66 738.72 1164.96
5 1658.3% 1495.57 2360.09
ké 2039.34 1852.91 3009.31
10 2662.36 2776.06 3224.01
15 3224.41 3721.27 4216.83
20 3789.89 4720.69 4823.63
30 4651.00 €318.27 6570.46
50 5945.4 7 9298.73 8029.99
100 8384.32 14717.75 11083.93
300 14318.99 28960.44 18681.10

Table 2: Tree cost statistics. We omit the cost of

connecting the chains and antichains in PEEL, so that
the PEEL cost may be lower than MST cost.

6 Conclusions and Future Work

We have proposed a new spanning and Steiner tree
formulation based on a minimum density criterion.
We have also presented several efficient heuristics for
constructing low-density trees. The average perfor-
mance of all our algorithms is within constant fac-
tors of optimal in terms of both tree cost and den-
sity. Our techniques can also be used to unify the new
density criterion with previous “performance-driven”
interconnection objectives in order to achieve simulta-
neous optimization of up to three competing intercon-
nection tree measures. Extensive simulations indicate
that our approaches are effective in practice, and hold
promise for applications to balanced-resource routing
in VLSI layout.
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It is still open whether there exists a polynomial-
time algorithm that constructs a routing tree with
both cost and density bounded by constants times
optimal in the worst case, and whether the MDIT
problem is NP-complete. Recall that PEEL holds
promise in that there exist examples where it outper-
forms COMB and COMB.ST by a factor of ©(\/n)
(Fig. 4); we conjecture that PEEL can be shown to
yield worst-case density that is within a constant fac-
tor of optimal. In fact, we offer two closely related
conjectures: (i) that the minimum density of a span-
ning tree over net N is at least the minimum of the
number of chains or the number of antichains needed
to cover N; and (ii) that the PEEL algorithm will use
at most two times the minimum possible number of
chains/antichains that cover N.
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