
Cong J, Duwe H, Kumar R et al. Better-than-worst-case design: Progress and opportunities. JOURNAL OF COMPUTER

SCIENCE AND TECHNOLOGY 29(4): 656–663 July 2014. DOI 10.1007/s11390-014-1457-2

Better-Than-Worst-Case Design: Progress and Opportunities

Jason Cong1 (丛京生), Fellow, ACM, IEEE, Henry Duwe2, Rakesh Kumar2, Member, ACM, IEEE
and Sen Li1 (李 森)

1Computer Science Department, University of California, Los Angeles, CA 90095-1596, U.S.A.
2Electrical and Computer Engineering Department, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A.

E-mail: cong@cs.ucla.edu; {duweiii2, rakeshk}@illinois.edu; senli@cs.ucla.edu

Received April 3, 2014; revised June 3, 2014.

Abstract Today, designers are forced to reduce performance and increase power requirements in order to reserve larger
margins that are required due to the greater variability introduced by smaller feature sizes and manufacturing variations
of modern IC designs. The better-than-worst-case design can both address the variability problem and achieve higher
performance/energy efficiency than the worst-case design. This paper surveys the progress to date, provides a snapshot
of the most representative methods in this field, and discusses the future research directions of the better-than-worst-case
design.

Keywords better-than-worst-case, error resilience, variability

1 Introduction

As transistor sizes scale down to the nanometer
range, a number of variability sources are introduced,
including process variation and environmental varia-
tion. Process variation is caused by dopant density
variation, stress occurring during manufacturing, and
edge geometry variation. The sources of environmen-
tal variation, on the other hand, can be overheat-
ing and voltage fluctuations. As device sizes further
shrink, the impact of variation becomes greatly am-
plified. Conventional design techniques conservatively
introduce guardbands to address the variability prob-
lem, but these can result in significant circuit perfor-
mance/energy overhead.

There is a common consensus that the relative mag-
nitude of variation is going to get much worse as we
approach the limit of CMOS scaling and start explor-
ing different nanotechnologies as alternatives to CMOS.
The better-than-worst-case (BTWC) design paradigm
has been proposed to account for this problem. The
goal of BTWC design is to remove some (or all) de-
sign guardbands and run the circuit at a higher clock
frequency to improve performance, or at a lower supply
voltage to increase energy efficiency. Also, a recent goal
has been to devote only as much hardware to a problem
as it is required for a “good enough” solution.

Broadly speaking, there are two categories in BTWC
design. The first category includes designs with er-
ror detection and correction circuits[1-7]. This kind of

design relies on some form of scaling of operational
parameters (such as the supply voltage), combined
with architectural/circuit-level techniques for efficient
error detection and correction, to achieve higher per-
formance/energy efficiency while maintaining correct-
ness of output. The second category of BTWC design
takes advantage of approximate computing, which al-
lows its output to have certain errors as long as the out-
put quality is acceptable by the user[8-10]. It is based
on either scaling of operational parameters or modify-
ing/redesigning the hardware architecture.

Another challenge in BTWC design is the ability to
estimate error probabilities. The existing techniques in-
clude tagged probabilistic simulations[11], Monte Carlo
timing simulations[12], binary-decision-diagram-based
techniques[13], and LUT-based regression[14].

In the remainder of this paper, we first discuss some
background and definitions used throughout the paper
(Section 2). We then discuss the category of BTWC
design with error detection and correction circuits in
Section 3. Section 4 describes approximate computing
BTWC designs in detail. Section 5 discusses the tech-
niques to estimate error probability in BTWC designs.
We discuss some future research challenges in Section
6, and conclude the paper in Section 7.

2 Background

For conventional architectures, the performance of
the circuit is only dependant on the worst-case delay, or

Survey
The research is partially supported by the National Science Foundation of USA under Grant No. CCF-0903541.
©2014 Springer Science +Business Media, LLC & Science Press, China



Jason Cong et al.: Better-Than-Worst-Case Design: Progress and Opportunities 657

the static longest path in the logic network. However,
(generally speaking) the performance of the BTWC ar-
chitectures is related not only to the worst-case delay,
but also to the possible timing error rate. There are
three main performance metrics of BTWC architecture:
error probability[1], error significance[14], and expected
delay[2].
• Error probability: a determination of the per-

formance of circuit C that will be implemented in
an error recovery scheme. For example, the Razor
architecture[4] uses extra clock cycles when it sees a tim-
ing error. Specifically, referring to Fig.1, let P clk

wrong be
the probability of circuit switching at time d = 1/clk or
later. In this case the error probability on a BTWC ar-
chitecture is P clk main

wrong where clk main is the fast clock
period in Fig.1. P clk main

wrong is defined as:

P clk main
wrong = Pr(C(x)clk main 6=

C(x)clk shadow |x ∈ inputs).

• Expected delay: an estimate of the performance of
a BTWC circuit. This can be easily computed by di-
viding the total processing time by the amount of data
processed, since different input sequences can take dif-
ferent amounts of time to propagate to the outputs.
The expected delay of a BTWC circuit with the target
clock period d can be computed as follows:

ExpDelay(d) = d× (1− P d
wrong) + (d + τerror)× P d

wrong,

where τerror is the time to detect and recover from an
error.
• Error significance: a determination of the magni-

tude of errors. We more precisely define error signifi-
cance as the signed average difference between correct
and erroneous results.

3 Designs with Error Correction Circuits

The key concept of BTWC design is to remove some
(or most) design guardbands and run the circuit at a

higher clock frequency to improve performance, or, at
a lower supply voltage, to increase energy efficiency.
As a consequence, error detection and correction cir-
cuits are introduced in order to guarantee correctness
of a program. In this section we begin by introducing
the Razor architecture[4] which is a classic representa-
tive of this field, and discuss an efficient logic synthesis
methodology[1] for BTWC designs.

3.1 Razor Architecture

The Razor architecture[4] was originally developed
for microprocessors with a well-defined pipeline archi-
tecture. It takes advantage of dynamic voltage scaling
(DVS) to obtain power savings, and introduces error
detection and correction circuits to eliminate timing er-
rors introduced by the sub-critical supply voltage. Ra-
zor tunes the supply voltage by monitoring the error
rate during operation. It represents a trade-off between
the power savings from operating at a lower supply volt-
age and the power penalty from the error detection and
correction circuits.

The exact Razor pipeline stage is shown in Fig.1.
Each flip-flop is accompanied with a shadow latch. The
shadow latch is clocked with a delayed clock. In this
way, it can catch any errors caused by the main flip-
flop being clocked early. Specifically, if the values of
the main flip-flop and the shadow latch are different
during comparison, then an error is detected and an
error signal is generated. In the subsequent cycle, the
valid data in the shadow latch is restored into the main
flip-flop, during which all the pipeline stages are stalled.
Therefore, if an instruction fails in pipeline stage L1, it
will get the correct value from the shadow latch in one
cycle and keep executing in pipeline stage L2. In other
words, it guarantees the forward progress of a failing
instruction with a small performance penalty.

Razor uses a voltage control system to maintain a
constant error rate Err ref . During runtime it samples
the current error rate Err cur at regular intervals, and
adjusts the supply voltage based on Errdiff = Err ref−

Fig.1. Razor stage with shadow latches and control lines[4].



658 J. Comput. Sci. & Technol., July 2014, Vol.29, No.4

Err cur. Razor implements a proportional control sys-
tem that adjusts supply voltage in proportion to Errdiff .

3.2 Logic Synthesis for BTWC Architecture

The Razor architecture was originally designed for
pipelined microprocessor architecture. Later work[1-2]

generalized this concept to synchronous circuits con-
trolled by a finite state machine (FSM) in order to im-
prove the circuit performance. The modified FSM is
called BTWC FSM. Fig.2 shows the difference between
a standard FSM and a BTWC FSM. All the registers
in a standard FSM architecture are converted into Ra-
zor registers — ones with shadow registers as in Fig.1.
The input registers are modified in a way that can be
buffered and stalled by the timing error signal. An ad-
ditional Razor stabilization stage is added at the end
of the BTWC FSM architecture.

Fig.2. Standard and BTWC FSMs[1]. (a) Standard FSM archi-

tecture. (b) Stallable FSM architecture.

Given a specific performance metric, circuit opti-
mization can be divided into two categories. The first
category includes techniques that transform the circuit
into another one of the same representation while opti-
mizing the performance metric. The operations in this
category can be further divided into three groups: ope-
rations that substitute nodes in a logic network, opera-
tions that collapse nodes, and operations that decom-
pose nodes. Substitute operations are less suitable for

BTWC architecture since they can create a significant
amount of changes, and as a result, their impact is very
difficult to evaluate. Collapse operations are mainly
used for creating a better environment for decomposi-
tion operations. [1] adapts balance decomposition algo-
rithms for the BTWC architecture and can achieve a
reduction in timing error probability by 2.3X with only
a 4% area overhead.

The second category includes techniques that con-
vert a circuit into an alternative representation (e.g.,
technology mapping) while optimizing the performance
metric. For example, the work in [2] develops an
efficient technology mapping algorithm BTWMap for
general synchronous designs that can operate better
than the worst-case delay. BTWMap minimizes the
probability of an error while assuming the circuit is
clocked at the maximum possible clock speed (2X the
worst-case delay). It then minimizes the area with the
user-assigned target clock period and area/performance
trade-offs. From the experiment results on MCNC
benchmarks, BTWMap can reduce the expected delay
by 13% with a 26% area overhead. Its modified ver-
sion, BTWMap+area, reduces the expected delay by
11% with only 10% area overhead.

Later work proposes making frequent local changes
to and-inverter graphs (AIGs)[5]. Since the effect on the
error probability from each change must be estimated,
using timing simulations to derive switching probabili-
ties is prohibitively expensive. Instead, switching prob-
abilities are estimated using PI switching probabilities
and the results are derived by traversing the circuit net-
work in a topological order. The following equations
estimate the switching probabilities of gate i:

Si =Tog i × Pr(g1 = NCV)× Pr(g2 = NCV)× · · ·×
Pr(gk = NCV),

where Tog i is the switching probability of path i’s in-
puts, gj is a side input, and NCV stands for non-
controlling value (e.g., logic “1” for an AND gate). The
switching probabilities are combined with a Gaussian
distribution, for gate delay variation estimation, to es-
timate the error probability for each path. AIG super-
gates and their subtrees are optimized in descending
order of potential error probability reduction. When
applied to the ISCAS 1989 benchmark circuits, these
optimizations increased throughput by 17.51% on ave-
rage for a 1.13% increase in area.

3.3 Slack Redistribution for BTWC
Architectures

One approach to improving the performance of
Razor-like architectures is to manipulate path error dis-



Jason Cong et al.: Better-Than-Worst-Case Design: Progress and Opportunities 659

tributions to reduce the error rate at a given operation
point. [7] confirms the existence of a “wall” of slack
postulated by the critical operating point (COP) hy-
pothesis in the OpenSPARC T1 processor. The COP
hypothesis states that a critical operating voltage, Vc,
exists; below this, massive path error rates overwhelm
recovery methods such as those in Razor. [7] proposes
a power-aware slack redistribution to allow a reduc-
tion in voltage beyond Vc to gradually increase error
rates. Fig.3 shows the slack wall and proposed slack re-
distribution. Slack redistribution attempts to increase
slack for the most frequently exercised paths, since such
paths are most likely to increase the error rate. By ite-
ratively decreasing the target voltage and optimizing
frequently exercised paths using cell sizing swaps, slack
redistribution provides a lower operating voltage at a
given error rate constraint. Path slack optimizations
which increase the power are rejected.

Fig.3. Slack wall.

The work in [7] demonstrates a 23% power savings
over the baseline design for an error rate of 1%. Power-
aware slack redistribution also has better power savings
over other techniques which reduce the error rate at a
given voltage. This is because power-aware slack re-
distribution makes cost effective optimizations where
the reduction in voltage outweighs the power increase
from cell sizing. Power-aware slack redistribution thus
increases the range over which Razor can be applied.
When coupled with Razor, power-aware slack redistri-
bution improves these power benefits and also allows
an increase in the throughput for a target voltage due
to a reduction in error rates. The observed power and
throughput benefits of slack redistribution cannot be
replicated by simply tightening timing constraints.

The work in [6] proposes CAD methodologies de-
signed specifically for use with hardware error re-
covery mechanisms such as Razor. [6] recognizes
that if a recovery mechanism is being used, paths
with a negative slack can be further downsized to
reduce power. Thus recovery-driven design allows
infrequently-exercised paths to violate timing and pro-
duce errors even at nominal voltage. In a manner simi-
lar to [7], [6] iteratively reduces the target voltage and
upsizes cells on frequently exercised paths which have
negative slack. Each iteration recovery-driven design

selects infrequently exercised paths with a positive slack
and allows them to have a negative slack. Once the
paths are partitioned into positive and negative slack
sets, [6] downsizes cells while respecting the partition-
ing. This process continues until a minimum power
netlist is achieved.

The work in [6] uses functional simulation to identify
activated paths for consideration during optimization.
Gate-level simulation produces the number of cycles in
which each activated path is toggled. Dividing the num-
ber of simulation cycles in which negative slack paths
were toggled, by the total cycles simulated, results in
an accurate error rate estimate during optimization.
Recovery-driven design can achieve a power savings of
up to 24% against traditional place-and-route at an er-
ror rate of 1%. Recovery-driven design shows a 21%
reduction in power compared to the power-aware slack
redistribution when both are used with Razor.

4 Approximate Computing Designs

Approximate computing designs improve power and
performance (from removing guardbands) by allow-
ing infrequent errors during execution. Many appli-
cations can tolerate such non-zero error rates. Three
approaches to approximate design are the manipula-
tion of the path error distribution[8], intelligent re-
design of the entire architecture[9], and re-architecting
hardware modules to produce a desirable path error
distribution[10].

4.1 Error Distribution Manipulation

Path error distributions can be manipulated to allow
larger power savings for a given error rate. [8] investi-
gates the dynamic use of two adders with different error
distributions. A simple ripple-carry adder (RCA) pro-
vides a graceful degradation in error rate as voltage is
lowered beyond the critical voltage, Vc, for a given cy-
cle time. A Kogge-Stone adder (KSA) has a lower Vc
for the same cycle time, but its error rates explode to
1.0 once its voltage is lowered beyond Vc. Depending
on application error-rate requirements, the adder with
the lower power is selected at runtime. Applications
that cannot tolerate errors or can only tolerate very
low error rates use KSAs, while applications that can
tolerate higher, but not catastrophic, error rates use
RCAs. When applied to the SAD kernel of H.264, the
dynamic solution uses 20% to 60% less power than a
static adder.

4.2 Probabilistic Pruning

There are several ways to realize approximate com-
puting design. One way is to rely on some form of



660 J. Comput. Sci. & Technol., July 2014, Vol.29, No.4

scaling of operational parameters like techniques dis-
cussed in Subsection 4.1. Another way is probabilistic
pruning[9] which prunes portions of circuits that have
a lower probability of being active.

The overall flow of this probabilistic tuning tech-
nique is as follows. Given an initial circuit de-
sign, it first estimates the probability of being active
for each path based on simulation or mathematical
model. Then, based on whether the application requires
weighted circuits or not, it performs weighted probabi-
listic pruning/uniform probabilistic pruning, and com-
putes an error rate in the pruned circuit using either
mathematical estimation or functional simulation. If
the error rate is higher than the target error rate, it
then undoes the last pruning, and the resulting design
is the final pruned design; otherwise it continues the
pruning process.

The gain achieved by probabilistic pruning is addi-
tive in that it can be combined with either standard
techniques that achieve higher energy/performance ef-
ficiency or techniques that use voltage scaling to achieve
additional gains.

4.3 Reconfigurable Approximate Adder

Another approach to approximate computing is to
re-architect processor modules (e.g., adders or multi-
pliers) to produce acceptable error distributions. [10]
details a reconfigurable, gracefully degrading adder
(GDA). The GDA adjusts its approximation error rate
during runtime to meet the varying quality of result and
throughput demands of an application. A GDA grace-
fully degrades by predicting carry-ins to the most sig-
nificant bits using carry-out information from a varia-
ble number of preceding bits. A reduction in the use
of carry-out information reduces computational effort
(i.e., lower power and less delay). The GDA gracefully
degrades the error rate with respect to computational
effort because the most significant bits are least affected
by the farthest input bits. Such graceful degradation
results in a significantly higher throughput than tra-
ditional approximate adders for a given error rate, as
shown in Fig.4. [10] uses GDA in the discrete cosine

Fig.4. Quality-effort and error-effort trade-off curves.

transform (DCT) of a JPEG encoding. The GDA re-
sults in a 21% increase in throughput and an increase
of over 3 dB of peak signal-to-noise ratio (PSNR) com-
pared to the next best approximate adder.

5 Error Probability Estimation

5.1 Monte Carlo Timing Simulations

The work in [12] models circuit delays that are due,
not only to static variations, but also to dynamic varia-
tions such as temperature. Each gate is modeled as a
collection of identical transistors which have a Gaussian
distribution for delay. The distribution’s parameter is
broken into a nominal value, an inter-die value, and sys-
tematic and random intra-die variations. Monte Carlo
simulations are performed. Each sample involves the
selection of these parameters for each gate and then a
timing simulation of the circuit. While providing accu-
racy within 5% of HSPICE simulations, this methodo-
logy decreases the execution time by five orders of mag-
nitude.

5.2 Binary-Decision-Diagram-Based
Techniques

Another method of error estimation uses the
timed characteristic function (TCF) for each node[13].
TCF (n, t−) contains all input vectors which make the
output n stable no later that t. The TCF for a node
(and each primary output) is calculated recursively us-
ing gate-specific equations such as the following for an
AND gate (c = a ∧ b):

TCF (c, t−) =CF (a′) · CF (b)·
TCF (a, t− d)−) + CF (a) · CF (b′)·
TCF (b, (t− d)−) + CF (a′) · CF (b′)·
[TCF (a, (t− d)−) + TCF (b, (t− d)−)]+

CF (a) · CF (b) · TCF (a, (t− d)−)·
TCF (b, (t− d)−).

CF (a′) includes all input vectors resulting in a final
value of logic “0”. Binary-decision diagrams (BDDs)
are used to calculate CF for each node. The probabi-
lity of error for a given cycle time is calculated by the
fraction of input vectors for which each primary output
is met over the total number of possible input vectors.
Unfortunately, binary-decision diagrams require expo-
nential space complexity in the worst case, which may
limit their utility for large circuits.

5.3 Tagged Probabilistic Simulations

Binary-decision diagrams require exponential space
complexity, and timing simulations require many test
inputs. Tagged probabilistic simulations (TPS) provide



Jason Cong et al.: Better-Than-Worst-Case Design: Progress and Opportunities 661

an efficient solution by building a signal and transition
probability waveform at each node[11]. These wave-
forms represent the instantaneous probability that each
node is a logic “1”, or transitioning to or from a logic
“1”. Each node’s probability waveform is partitioned
into sets of signals that start at value x and end at
value y. Such tagged probability waveforms can be
propagated from primary inputs to primary outputs us-
ing propagation equations and delays for each gate type
(AND, OR, etc.). Error probability for a primary out-
put is estimated by taking the difference of the primary
output probabilities between the minimum safe cycle
time, Tp, and a cycle time, Tp′, less than Tp. TPS is
good for tree-structured circuits, but additional heuris-
tic adjustments are required for reconvergent paths.

5.4 LUT-Based Regression

Many previous studies on error probability estima-
tion have focused on the problem of estimating a sin-
gle approximate module’s error rate in isolation. In
order to effectively use approximate hardware mod-
ules, CAD tools must be able to efficiently estimate
the output quality of a design composed of approxi-
mate modules. A recent work proposes using look-up
tables (LUTs) coupled with regression to estimate error
composition[14]. The proposed tool characterizes the er-
ror rate and error significance responses of each module
in a library relative to a given input distribution. The
value distribution for each module is also characterized
based on the input distribution. The value distribu-
tion at each node within a design is determined by a
single topological pass. The intrinsic error rate (ERin)
and error significance (ES in) estimates for individual
nodes can be directly looked up based on the input dis-
tributions at each node. The output estimates (ERz

and ES z) can be generated based on the input esti-
mates (ERa, ERb, ESa, and ES b) using the following
regression equations where α{in, c, p} are regression co-
efficients:

ERz =1− 10αc × (1− ERin)αin×
((1− ERa)× (1− ERb))αp ,

ES z =αin × ES in + αp × (ESa + ES b) + αc.

The LUT-based regression technique improves the
accuracy of error estimation by 3.75x over interval-
based error composition estimation techniques, while
running 8.4X faster for a set of MAC circuits.

6 Challenges and Opportunities for BTWC
Design

Several considerations ultimately dictate the efficacy
and practicality of BTWC designs. First, it is criti-

cal that a small amount of reduction in reliability can
be traded for significant power benefits. Also, hard-
ware errors arising from running at a reduced relia-
bility need to be tolerated by applications in the con-
text of approximate designs. Often, a large fraction
of hardware components must be redesigned to allow
meaningful power/reliability trade-offs[5-7,15]. Further-
more, the error distribution needs to be carefully mana-
ged in order for the applications to tolerate errors[8,10],
even for ASICs. It is critical that effective and gene-
ral hardware design methodologies first be developed
that allow controlled power/reliability trade-offs. The
resulting hardware should also generate errors from a
distribution with known properties. For example, hard-
ware can be designed such that the error distribution is
(largely) input independent[16]. Programming models
and runtime systems, etc., that exploit these trade-offs
can then follow.

Algorithmic transformation is another frontier for
BTWC design. Algorithm selection for an applica-
tion has been conventionally dictated by concerns such
as performance, and more recently, energy. How-
ever, transforming applications into algorithmic forms
that are significantly more resilient can allow greater
hardware approximation. Examples include transform-
ing applications into iterative problems[17] or sam-
pling problems[18], where many hardware errors sim-
ply increase the runtime instead of affecting output
quality[19]. Many of these algorithms also lead to highly
parallel domain-specific hardware[19]. Unfortunately,
the algorithmic transformations are often application-
specific, and may not be easily generalizable. The
transformation is also largely manual — thus research
is needed on automatic transformations. Finally, many
transformed implementations do not provide the same
guarantees as the baseline implementations. Research
is needed to provide bounds on output quality for the
alternate algorithmic implementations.

Opportunities also exist to support hardware op-
timizations that make certain controlled software ap-
proximations practical. For example, hardware support
for branch herding[20] — forcing all copies of a pro-
gram executing on an SIMD processor to branch in the
same direction for certain branches in order to elimi-
nate the performance overhead of control divergence
— leads to significantly higher performance than per-
forming branch herding on commodity hardware. Such
hardware optimizations need to be co-designed with
software, and the compiler. The approximate system
co-design must address several challenges: modeling the
effect of an approximation on QoS, modeling the effect
of composing approximations, applying approximations
automatically, guaranteeing QoS, etc. A promising di-



662 J. Comput. Sci. & Technol., July 2014, Vol.29, No.4

rection is working on analyzing critical instructions in
a program[21]: given an error tolerance threshold of
an application, it develops an automated analysis tech-
nique in the compilation time to analyze which instruc-
tions are critical and which are not (in the sense that
its failure will not violate the error tolerance thresh-
old). Note that these challenges exist for hardware
approximation as well. Recent work[14], for exam-
ple, shows that error composition may become an in-
tractable problem for large hardware designs.

Furthermore, general-purpose programmable pro-
cessors (GPPs) face additional challenges. The diffi-
culty of exactly modeling the manifestation of faults
as software errors, except in case of limited functional
under-design (e.g., reduced precision), makes hardware
approximation difficult. Other challenges include fault
containment, expression of exact reliability require-
ments for a given instruction/data, and exact mapping
between programmer intent and operational parame-
ters. Furthermore, the additional layers of abstraction
make some of the challenges mentioned earlier even
worse (e.g., modeling the effect of an approximation on
QoS, modeling the effect of composing approximation,
applying approximations automatically, guaranteeing
QoS). The challenges are particularly worse when er-
rors are due to parametric under-design. Many of these
challenges that need to be addressed before a credible
hardware approximation-based system can be built for
GPPs.

Finally, as we enter the era of dark silicon, we be-
lieve that future computer architectures will be rich
in accelerators. Recent studies address the issues of
accelerator sharing, composition, scheduling, manage-
ment, and virtualization[22-24]. How to introduce im-
precise accelerators and manage error prorogation in
accelerator-rich architectures is another important re-
search direction.

7 Conclusions

BTWC design is one of the architecture design
trends in the future because of the greater variability
introduced by the smaller feature size of modern IC
designs. With this in mind, this survey paper dis-
cusses the current literature in BTWC design, rang-
ing from designs with error detection/correction circuits
and approximate computing designs, to error probabi-
lity estimation techniques. Our paper outlines the fu-
ture research challenges and opportunities for BTWC
designs.

References

[1] Cong J, Minkovich K. Logic synthesis for better than worst-
case designs. In Proc. Int. Symp. VLSI Design, Automation

and Test, April 2009, pp.166-169.

[2] Cong J, Minkovich K. Mapping for better than worst-case de-
lays in LUT-based FPGA designs. In Proc. the 16th FPGA,
Feb. 2008, pp.56-64.

[3] Austin T, Bertacco V, Blaauw D, Mudge T. Opportunities
and challenges for better than worst-case design. In Proc.
ASP-DAC, Jan. 2005, pp.2-7.

[4] Ernst D, Kim N S, Das S et al. Razor: A low-power pipeline
based on circuit-level timing speculation. In Proc. the 36th
MICRO, Dec. 2003, pp.7-18.

[5] Liu Y, Ye R, Yuan F et al. On logic synthesis for timing
speculation. In Proc. ICCAD, Nov. 2012, pp.591-596.

[6] Kahng A B, Kang S, Kumar R, Sartori J. Recovery-driven
design: A power minimization methodology for error-tolerant
processor modules. In Proc. the 47th DAC, June 2010,
pp.825-830.

[7] Kahng A, Kang S, Kumar R, Sartori J. Designing a processor
from the ground up to allow voltage/reliability tradeoffs. In
Proc. the 16th HPCA, June 2010.

[8] Narayanan S, Sartori J, Kumar R, Jones D. Scalable stochas-
tic processors. In Proc. DATE, Mar. 2010, pp.335-338.

[9] Lingamneni A, Enz C, Nagel J L et al. Energy parsimonious
circuit design through probabilistic pruning. In Proc. DATE,
Mar. 2011.

[10] Ye R, Wang T, Yuan F et al. On reconfiguration-oriented
approximate adder design and its application. In Proc. IC-
CAD, Nov. 2013, pp.48-54.

[11] Tosson A, Garg S, Anis M. Tagged probabilistic simulation
based error probability estimation for better-than-worst case
circuit design. In Proc. the 21st VLSI-SoC, Oct. 2013,
pp.368-373.

[12] Ganapathy S, Canal R, Gonzalez A, Rubio A. Circuit propa-
gation delay estimation through multivariate regression-based
modeling under spatio-temporal variability. In Proc. DATE,
Mar. 2010, pp.417-422.

[13] Wan L, Chen D. DynaTune: Circuit-level optimization for
timing speculation considering dynamic path behavior. In
Proc. ICCAD, Nov. 2009, pp.172-179.

[14] Chan W T, Kahng A B, Kang S et al. Statistical analysis and
modeling for error composition in approximate computation
circuits. In Proc. the 31st ICCD, Oct. 2013, pp.47-53.

[15] Kahng A, Kang S, Kumar R et al. Slack redistribution for
graceful degradation under voltage overscaling. In Proc. the
15th ASP-DAC, Jan. 2010, pp.825-831.

[16] Abdallah R, Lee Y H, Shanbhag N R. Timing error statis-
tics for energy-efficient robust DSP systems. In Proc. DATE,
Mar. 2011.

[17] Sloan J, Kesler D, Kumar R, Rahimi A. A numerical
optimization-based methodology for application robustifica-
tion: Transforming applications for error tolerance. In Proc.
DSN, July 2010, pp.161-170.

[18] Deka B, Birklykke A, Duwe H et al. Markov chain algorithms:
A template for building future robust low power systems. In
Proc. Asilomar Conf. Signals, Systems and Computers, Nov.
2013, pp.118-125.

[19] Kesler D, Deka B, Kumar R. A hardware acceleration tech-
nique for gradient descent and conjugate gradient. In Proc.
the 9th SASP, June 2011, pp.94-101.

[20] Sartori J, Kumar R. Branch and data herding: Reducing con-
trol and memory divergence for error-tolerant GPU applica-
tions. IEEE Transactions on Multimedia, 2013, 15(2): 279-
290.

[21] Cong J, Gururaj K. Assuring application-level correctness
against soft errors. In Proc. ICCAD, Nov. 2011, pp.150-157.

[22] Cong J, Ghodrat M A, Gill M et al. Architecture support for
accelerator-rich CMPs. In Proc. the 49th DAC, June 2012,
pp.843-849.



Jason Cong et al.: Better-Than-Worst-Case Design: Progress and Opportunities 663

[23] Cong J, Ghodrat M A, Gill M. CHARM: A composable
heterogeneous accelerator-rich microprocessor. In Proc.
ISLPED, July 30-August 1, 2012, pp.379-384.

[24] Cong J, Ercegovac M, Huang M et al. Energy-efficient com-
puting using adaptive table lookup based on nonvolatile mem-
ories. In Proc. ISLPED, Sept. 2013, pp.280-285.

Jason Cong received his B.S.
degree in computer science from
Peking University in 1985, his M.S.
and Ph.D. degrees in computer sci-
ence from the University of Illinois
at Urbana-Champaign in 1987 and
1990, respectively. Currently, he is
a Chancellor’s Professor at the Com-
puter Science Department of Uni-
versity of California, Los Angeles,

UCLA, the director of Center for Domain-Specific Com-
puting (CDSC), co-director of UCLA/Peking University
Joint Research Institute in Science and Engineering, and
co-director of the VLSI CAD Laboratory. He served as the
chair the UCLA Computer Science Department from 2005
to 2008. Dr. Cong is also a distinguished visiting professor
at Peking University and the director of PKU Center for
Energy-Efficient Computing and Applications (CECA). Dr.
Cong’s research interests include synthesis of VLSI circuits
and systems, programmable systems, novel computer archi-
tectures, nano-systems, and highly scalable algorithms. He
has over 400 publications in these areas, including 10 best
paper awards, and the 2011 ACM/IEEE A. Richard Newton
Technical Impact Award in Electric Design Automation. He
was elected to an IEEE Fellow in 2000 and ACM Fellow in
2008. He is the recipient of the 2010 IEEE Circuits and
System (CAS) Society Technical Achievement Award “For
seminal contributions to electronic design automation, espe-
cially in FPGA synthesis, VLSI interconnect optimization,
and physical design automation”.

Henry Duwe received his B.S.-
AMEP in 2010 from the Univer-
sity of Wisconsin–Madison and his
M.S. degree in electrical and com-
puter engineering (ECE) in 2013
from the University of Illinois at
Urbana-Champaign. His M.S. work
focused on characterizing and effec-
tively exploiting the dynamic behav-
ior of fault tolerance at the instruc-

tion level. He is currently a Ph.D. candidate in ECE at the
University of Illinois at Urbana-Champaign. His research in-
terests include the design of programmable hardware for un-
reliable substrates and the design of programmable stochas-
tic accelerators.

Rakesh Kumar is an associate
professor in the Electrical and Com-
puter Engineering Department at
the University of Illinois at Urbana
Champaign. His current research in-
terests are in computer architecture,
stochastic and approximate comput-
ing, low power and error resilient
computer systems, and architectures
for inference and machine learning.

His research recognitions include several best paper awards
and best paper award nominations, ARO Young Investi-
gator Award, Arnold O Beckman Research Award, FAA
Creative Research Award, UCSD CSE Best Dissertation
Award, and an IBM Ph.D. Fellowship. His teaching recogni-
tions include appearance on UIUC’s List of Teachers Ranked
as Excellent. Advising recognitions include Engineering
Council Outstanding Advisor Award. Rakesh has a B.S.
degree from IIT Kharagpur and a Ph.D. degree in computer
science (computer engineering) from University of Califor-
nia at San Diego.

Sen Li received his B.S. degree in
computer science from Peking Uni-
versity in 2010, and his M.S. de-
gree in computer science from the
University of California, Los Ange-
les in 2014. His research inter-
est includes approximate comput-
ing, static/dynamic program analy-
sis, and error-resilient architecture.


