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ABSTRACT | Since its establishment in 2009, the Center

for Domain-Specific Computing (CDSC) has focused on

customizable computing. We believe that future comput-

ing systems will be customizable with extensive use of

accelerators, as custom-designed accelerators often provide

10-100X performance/energy efficiency over the general-

purpose processors. Such an accelerator-rich architecture

presents a fundamental departure from the classical von Neu-

mann architecture, which emphasizes efficient sharing of the

executions of different instructions on a common pipeline,

providing an elegant solution when the computing resource

is scarce. In contrast, the accelerator-rich architecture fea-

tures heterogeneity and customization for energy efficiency;

this is better suited for energy-constrained designs where

the silicon resource is abundant and spatial computing is

favored—which has been the case with the end of Dennard

scaling. Currently, customizable computing has garnered great

interest; for example, this is evident by Intel’s $17 billion

acquisition of Altera in 2015 and Amazon’s introduction of field-

programmable gate-arrays (FPGAs) in its AWS public cloud.

In this paper, we present an overview of the research pro-

grams and accomplishments of CDSC on customizable com-

puting, from single chip to server node and to datacenters,

with extensive use of composable accelerators and FPGAs.

We highlight our successes in several application domains,

such as medical imaging, machine learning, and computational

genomics. In addition to architecture innovations, an equally
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important research dimension enables automation for cus-

tomized computing. This includes automated compilation for

combining source-code-level transformation for high-level syn-

thesis with efficient parameterized architecture template gen-

erations, and efficient runtime support for scheduling and

transparent resource management for integration of FPGAs for

datacenter-scale acceleration with support to the existing pro-

gramming interfaces, such as MapReduce, Hadoop, and Spark,

for large-scale distributed computation. We will present the

latest progress in these areas, and also discuss the challenges

and opportunities ahead.

KEYWORDS | Accelerator-rich architecture; CPU-FPGA;

customizable computing; FPGA cloud; specialized acceleration

I. I N T R O D U C T I O N

Since the introduction of the microprocessor in 1971,
the improvement of processor performance in its first
30 years was largely driven by the Dennard scaling of
transistors [1]. This scaling calls for reduction of transistor
dimensions by 30% every generation (roughly every two
years) while keeping electric fields constant everywhere
in the transistor to maintain reliability (which implies
that the supply voltage needs to be reduced by 30% as
well in each generation). Such scaling not only doubles
the transistor density each generation and reduces the
transistor delay by 30%, but also at the same time improves
the power by 50% and energy by 65% [2]. The increased
transistor count also leads to more architecture design
innovations, such as better memory hierarchy designs and
more sophisticated instruction scheduling and pipelining
support. These combined factors led to over 1000 times
performance improvement of Intel processors in 20 years
(from the 1.5-µm generation to the 65-nm generation),
as shown in [2].

Unfortunately, Dennard scaling came to an end in the
early 2000s. Although the transistor dimension continues
to be reduced by 30% per generation according to Moore’s
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law, the supply voltage scaling had to almost come to a halt
due to the rapid increase of leakage power, which means
that transistor density can continue to increase, but so can
the power density. In order to continue meeting the ever-
increasing computing needs, yet maintaining a constant
power budget, simple processor frequency is no longer
scalable and there is a need to exploit the parallelism in
the applications to make use of the abundant number of
transistors. As a result, the computing industry entered
the era of parallelization in the early 2000s with tens
to thousands of computing cores integrated in a single
processor, and tens of thousands of computing servers
connected in a warehouse-scale data center. However,
studies in the late 2000s showed that such highly parallel,
general-purpose computing systems would soon again face
serious challenges in terms of performance, power, heat
dissipation, space, and cost [3], [4]. There is a lot of room
to be gained by customized computing, where one can
adapt the architecture to match the computing workload
for much higher computing efficiency using various kinds
of customized accelerators. This is especially important as
we enter a new decade with a significant slowdown of
Moore’s law scaling.

So, in 2008, we submitted a proposal entitled
“Customizable Domain-Specific Computing” to the
National Science Foundation (NSF), where we look
beyond parallelization and focus on domain-specific
customization as the next disruptive technology to
bring orders-of-magnitude power-performance efficiency.
We were fortunate that the proposal was funded by the
Expeditions in Computing Program, one of the largest
investments by the NSF Directorate for Computer and
Information Science and Engineering (CISE), which led
to the establishment of the Center for Domain-Specific
Computing (CDSC) in 2009 [5]. This paper highlights a
set of research results from CDSC in the past decade.

Our proposal was motivated by the large perfor-
mance gap between a totally customized solution using
an application-specific integrated circuit (ASIC) and a
general-purpose processor shown in several studies. In par-
ticular, we quoted a 2003 case study of the 128-b key AES
encryption algorithm [6], where an ASIC implementation
in a 0.18-µm complementary metal–oxide–semiconductor
(CMOS) technology achieved a 3.86-Gb/s processing rate
at 350-mW power consumption, while the same algorithm
coded in assembly languages yielded a 31-Mb/s processing
rate with 240-mW power running on a StrongARM proces-
sor, and a 648-Mb/s processing rate with 41.4-W power
running on a Pentium III processor. This implied a perfor-
mance/energy efficiency (measured in gigabits per second
per Watt) gap of a factor of 85X and 800X, respectively,
when compared with the ASIC implementation.

The main source of energy inefficiency was due to
the classical von Neumann architecture, which was an
ingenious design proposed in 1940s when the availabil-
ity of computing elements (electronic relays or vacuum
tubes) was the limiting factor. It allows tens or even

hundreds of instructions to be multiplexed and executed
on a common datapath pipeline. However, this general-
purpose, instruction-based architecture comes with a high
overhead for instruction fetch, decode, rename, sched-
ule, etc. In [7], it was shown that for a typical super-
scalar out-of-order pipeline, the actual compute units
and memory account for only 36% of the energy con-
sumption, while the majority of the energy consumption
(i.e., the remaining 64%) is for supporting the flexible
instruction-oriented general-purpose architecture. After
more than five decades of Moore’s law scaling, however,
we now can integrate tens of billions of transistors on a
single chip. The design constraint has shifted from com-
pute resource limited to power/energy-limited. Therefore,
the research at CDSC focuses on extensive use of customiz-
able accelerators, including fine-grain field-programmable
gate arrays (FPGAs), coarse-grain reconfigurable arrays
(CGRAs), or dynamically composable accelerator build-
ing blocks at multiple levels of computing hierarchy for
greater energy efficiency. In many ways, such accelerator-
rich architectures are similar to a human brain, which
has many specialized neural microcircuits (accelerators),
each dedicated to a different function (such as navigation,
speech, vision, etc.). The computation is carried out spa-
tially instead of being multiplexed temporally on a com-
mon processing engine. Such high degree of customization
and spatial data processing in the human brain leads to
a great deal of efficiency—the brain can perform various
highly sophisticated cognitive functions while consuming
only about 20 W, an inspiring and challenging performance
for computer architects to match.

Since the establishment of CDSC in 2009, the theme of
customization and specialization also received increasing
attention from both the research community and the indus-
try. For example, Baidu and Microsoft introduced FPGAs in
their data centers in 2014 [8], [9]. Intel acquired Altera,
the second-largest FPGA company in 2015 in order to
provide integrated CPU+FPGA solutions for both cloud
computing and edge computing [10]. Amazon introduced
FPGAs in its AWS computing cloud in 2016 [11]. This trend
was quickly followed by other cloud providers, such as
Alibaba [12] and Huawei [13]. It is not possible to cover
all the latest developments in customizable computing in a
single paper. This paper chooses to highlight the significant
contributions in the decade-long effort from CDSC. We also
make an effort to point out the most relevant work. But it
is not the intent of this paper to provide a comprehensive
survey of the field, and we regret for the possible omissions
of some related results.

The remainder of this paper is organized as follows.
Section II discusses different levels of customization,
including the chip level, server-node level, and datacen-
ter level, and presents the challenges and opportunities
at each level. Section III presents our research on com-
pilation tools to supporting the easy programming for
customizable computing. Section IV presents our runtime
management tools to deploy such accelerators in servers
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Fig. 1. An overview of accelerator-rich architectures (ARAs).

and datacenters. We conclude the paper with future
research opportunities in Section V.

II. L E V E L S O F C U S T O M I Z AT I O N

Our research suggests that customization can be enabled
at different levels of computing hierarchy, including chip
level, server node level, and datacenter level. This section
discuss the customization potential at each, and the asso-
ciated architecture design problems, such as 1) how flex-
ible should the accelerator design be, from fixed-function
accelerator design to composable accelerators to program-
mable fabric; 2) how to design the corresponding on-chip
memory hierarchy and network-on-chip efficiently for such
accelerator-rich architectures; and 3) how to efficiently
integrate the accelerators with the processor? We leave the
compilation and runtime support to the next section.

A. Chip-Level Customization

1) Overview of Accelerator-Rich Architectures: Since the
establishment of CDSC, we have explored various design
options for the chip-level customizable accelerator-rich
architectures (ARAs). In such ARAs, a sea of het-
erogeneous accelerators are customized and integrated
into the processor chips, in companion with a cus-
tomized memory hierarchy and network-on-chip, to pro-
vide orders-of-magnitude performance and energy gains

over conventional general-purpose processors. Fig. 1
presents an overview of our ARA research scope includ-
ing customization for compute resources, on-chip memory
hierarchy, and network-on-chip. An open source simulator
called PARADE [14] is developed to perform such archi-
tectural studies. In companion with the PARADE simulator,
a wide range of applications, including those in medical
imaging, computer vision and navigation, and commer-
cial benchmarks from PARSEC, are used to evaluate the
designs [14].

a) Customizable compute resources: As shown in Fig. 1,
our first ARA design (ARC [15], [16]) features dedicated
accelerators designed for a specific application domain.
ARC features a global hardware accelerator manager to
support sharing and arbitration of multiple cores for a
common set of accelerators. It uses a hardware-based
arbitration mechanism to provide feedback to cores to indi-
cate the wait time before a particular accelerator resource
becomes available and lightweight interrupts to reduce
the OS overhead. Simulation results show that, with a
set of accelerators generated by a high-level synthesis
tool [17], it can achieve an average of 18x speedup and
24x energy gain over an Ultra-SPARC CPU core for a wide
range of applications in medical imaging, computer vision
and navigation, as well as commercial benchmarks from
PARSEC [18]. From this study, we also noticed that many
accelerators in a given domain can be decomposed into
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a set of primitive computations, such as low-order poly-
nomials, square root, and inverse computations. So, our
second-generation ARA (CHARM [7], [19]) uses a set of
accelerator building blocks (ABBs), which are grouped into
ABB islands, to compose accelerators based on current sys-
tem demand. The composition of accelerators is statically
determined at the compilation time, but dynamically allo-
cated from a resource pool at runtime by an on-chip accel-
erator building block composer (ABC), leading to a much
more efficient resource utilization. With respect to the
same set of medical imaging benchmarks, the experimental
results on CHARM demonstrate over 2x better perfor-
mance than ARC with similar energy efficiency for medical
imaging applications. In order to support new workloads
which were not considered in the ABB designs, our third-
generation ARA (CAMEL [20]) uses a programmable fabric
to provide even more adaptability and longevity to the
design. Accelerator building blocks could be synthesized in
the programmable fabric to match varying demand, from
new emerging domains or algorithmic evolution in the
existing application domains.

In our ARA work, all accelerators are loosely coupled
with CPU cores in a sense that they do not belong to
any single core, but can be shared by all the cores via
network-on-chip. In fact, they share L2 cache with the
CPU cores (more discussion about the memory customiza-
tion in Section II-A1b). Alternative approaches from other
research groups explored the use of tightly coupled accel-
erators by extending a processor core with customized
instructions or functional units for lower latency [21],
[22]. In terms of the granularity of the customized accel-
erators, commercial field-programmable fabrics (FPGAs)
provide ultrafine-grained reconfigurability that sacrifices
some efficiency and performance for generality, while
coarse-grained reconfigurable arrays (CGRAs) [23]–[25]
provide composable accelerators with near-ASIC perfor-
mance and FPGA-like configurability. We expect future
chips to have more computing heterogeneity with dif-
ferent tradeoff between programmability and efficiency,
including various CPU cores, dedicated accelerators, com-
posable accelerators, fine-grain and coarse-grain program-
mable fabrics, as well as SIMD cores in a single chip
to satisfy the computing demands of the ever-changing
applications.

b) Customizable on-chip memory hierarchy: In an
accelerator-based architecture, buffers are commonly used
as near memories for accelerators. An accelerator needs
to fetch multiple input data elements simultaneously
with predictable or even fixed latency to maximize its
performance. To achieve this goal, we engaged in a
series of studies to customize the on-chip memory hier-
archy to investigate both the dedicated buffers for accel-
erators [26]–[28], and hybrid and adaptive cache and
buffer designs shared between CPU cores and accelerators
[29]–[31], as shown in Fig. 1.

For the dedicated buffers for accelerators, we often have
to partition a buffer into multiple on-chip memory banks to

Fig. 2. Address translation support for ARA.

maximize on-chip memory bandwidth. We developed the
general theory and algorithms for cyclic memory partition-
ing to remove memory access conflict at each clock cycle
to enable efficient pipelining [26], [27]. For stencil appli-
cations, we also develop an optimal nonuniform memory
partitioning scheme that is guaranteed to simultaneously
minimize the on-chip buffer size and off-chip memory
access [28]. These results can be used for both ASIC and
FPGA accelerator designs.

One representative example of adaptive cache shared
between CPU cores and on-chip accelerators is our Buffer-
in-NUCA (BiN) work [31], which dynamically allocates
buffers of competing cores and accelerators in a nonuni-
form cache architecture (NUCA). BiN features: 1) a global
buffer manager responsible for buffer allocation to all
accelerators on-chip; 2) a dynamic interval-based global
allocation method to assign spaces in NUCA caches to
accelerators that can best utilize the additional buffer
space; and 3) a flexible paged allocation method to mini-
mize accelerator-to-buffer distance and limit the impact of
buffer fragmentation, with only a small local page table at
each accelerator. Compared to the alternative approaches
using the accelerator store (AccStore) scheme [32] and
the Buffer-integrated-Cache (BiC) scheme [33] for sharing
buffers and/or caches among accelerators, BiN improves
performance by 32% and 35% and reduces energy by 12%
and 29% for medical imaging applications.

To improve the ARA programmability and avoid
unnecessary memory copy between CPU cores and accel-
erators, a unified memory space between them is essen-
tial. In order to support such unified memory space,
we have to provide efficient address translation support
in ARAs. We characterize the memory access behavior of
customized accelerators to drive the TLB augmentation
and MMU designs, as shown in Fig. 2. First, to support
bulk transfers of consecutive data between the scratch-
pad memory of customized accelerators and the memory
system, we present a relatively small private TLB design
(with 32 entries per accelerator instance) to provide low-
latency caching of translations to each accelerator. Second,
to compensate for the effects of the widely used data tiling
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Fig. 3. Hybrid NoC with predictive reservation.

techniques, we design a level-two TLB (with 512 entries)
to be shared by all accelerators to reduce private TLB
misses on common virtual pages, eliminating duplicate
page walks from accelerators working on neighboring data
tiles that are mapped to the same physical page. This two-
level TLB design effectively reduces page walks by 75.8%
on average. Finally, instead of implementing a dedicated
MMU which introduces additional hardware complexity,
we propose simply leveraging the host per-core MMU for
efficient page walk handling. This mechanism is based on
our insight that the existing MMU cache and data cache in
the host core side satisfies the demand of customized accel-
erators with minimal overhead. Using applications in the
four domains mentioned at the beginning of Section II-A,
our evaluation demonstrates that the combined approach
achieves 7.6x average speedup over the naive IOMMU
approach, and is only 6.4% away from the performance
of the ideal address translation [34].

c) Customizable network-on-chip (NoC): The throughput
of an accelerator is often bound by the rate at which the
accelerator is able to interact with the memory system.
As shown in Fig. 1, on the one hand, we explored the use of
radio-frequency interconnect (or RF-I) over on-chip wave-
guided transmission lines [35] as on-chip interconnect to
provide high aggregate bandwidth, low latency via signal
propagation at the speed of light, and customizable point-
to-point communications (through frequency multiplex-
ing). On the other hand, we developed a hybrid NoC
based on the conventional on-chip interconnect technology
but with a hybrid circuit switching and packet switching
to improve the performance. In particular, it uses pre-
dictive reservation (HPR) [36], shown in Fig. 3, based
on the observation that accelerator memory accesses usu-
ally exhibit predictable patterns, creating highly utilized
network paths. By introducing circuit switching to cover
accelerator memory accesses, HPR reduces per-hop delays
for accelerator traffic. Unlike previous circuit-switching
proposals, HPR eliminates circuit-switching setup and tear-
down latency by reserving circuit-switched paths when
accelerators are invoked. We further maximize the benefit
of path reservation by regularizing the communication
traffic through TLB buffering and hybrid switching. The
combined effect of these optimizations reduces the total
execution time by 11.3% over a packet-switched mesh
NoC.

A more detailed survey of most of these techniques
covered in this section can be found in [37].

2) Simulation Environment and In-Depth Analysis: To
better evaluate ARA designs, we developed an open-
source simulation infrastructure called the Platform for
Accelerator-Rich Architectural Design and Exploration
(PARADE). In addition, we performed in-depth analysis
to provide insights into how ARAs can achieve the large
performance and energy gains.

a) PARADE simulation infrastructure [14]: As shown
in Fig. 1, the PARADE infrastructure models each accel-
erator quickly by leveraging high-level synthesis (HLS)
tools, so that users can easily describe the accelerators in
high-level C/C++ languages. We provide a flow to auto-
matically generate either dedicated or composable acceler-
ator simulation modules that can be directly plugged into
PARADE through the customizable NoC. We also provide
a cycle-accurate model of the hardware global accelerator
manager that efficiently manages accelerator resources in
the accelerator-rich design. PARADE is integrated with
the widely used cycle-accurate full-system simulator gem5
[38], which models the CPU cores and the cache memory
hierarchy. By extending gem5, PARADE also provides a
cycle-accurate model of the coherent cache/scratchpad
with shared memory between accelerators and CPU cores,
as well as a customizable NoC. In addition to performance
simulation, PARADE also models the power, energy, and
area using existing toolchains including McPAT [39] for the
CPU, and HLS and RTL tools for accelerators. A wide range
of applications with pre-built accelerators, including those
in medical imaging, computer vision and navigation, and
commercial benchmarks from PARSEC, are also released
with PARADE.

b) Performance analysis: To gain deep insights into the
big performance gains, we conduct an in-depth analysis of
ARAs and observe that ARAs achieve performance gains
from both computation and memory access customization:
ARAs (a single fixed-function accelerator instance in ARC)
get 15x speedup over CPUs (a single X86 CPU core) in
the computation, and 25x speedup in the memory access.
For computation customization, ARAs exploit both fine-
grained and coarse-grained parallelism to generate a cus-
tomized processing pipeline without instruction execution
overhead. For memory access customization, ARAs exploit
a tile-based three-stage read–compute–write execution
model that reduces the number of memory accesses and
improves the memory-level parallelism (MLP). We quan-
titatively evaluate the performance impact of both factors
and surprisingly find that the dominating contributor to
the ARA memory access performance improvement is the
improved MLP rather than the widely expected memory
access reduction. In fact, we find that existing GPU accel-
erators also benefit from the improved MLP through using
different techniques. The totally customized processing
pipeline of ARAs further provides an average of 1.4x
speedup over GPUs. On overage, ARAs are 18x more
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Fig. 4. An overview of the AIM architecture.

energy efficient than GPUs, at the same technology node
and the same number of GPU stream multiprocessors and
ARA accelerator instances.

3) Near Data Acceleration: As we improve the com-
puting efficiency with the extensive use of accelerators,
memory bandwidth is becoming an increasing limitation.
To address this issue, our recent accelerator-interposed
memory (AIM) work [40] proposes to move the acceler-
ators close to the memory system, as shown in Fig. 4.
To avoid the high memory access latency and bandwidth
limitation of CPU-side acceleration, we design accelera-
tors as a separate package, called an AIM module, and
physically place an AIM module between each DRAM
DIMM module and conventional memory bus network.
Such an AIM module consists of an FPGA chip to provide
flexible accelerator designs and two connectors, one to
the memory bus and the other to each DIMM. A set
of AIM modules can be introduced to an off-the-shelf
computer with minimal modification to the existing soft-
ware to enable accelerator offloading. The overall memory
capacity and bandwidth scales well with the increasing
number of DIMMs in the system. Experimental results for
genomics applications show that AIM achieves up to 3.7x
better performance than the CPU-side acceleration, when
there are 16 instances of accelerators and DIMMs in the
system. The AIM approach is a viable alternative to 3-D
stacked memory [41], [42] and could be more economical.
We believe one of the future trends is to move accelerators
closer to the data, where they can have more data access
bandwidth, as well as lower data access latency.

B. Sever-Node Level Customization

Due to the high cost and long design cycle of ASIC
implementations, we did not implement the ARAs in
a single silicon chip. Instead, we use the server-node
level integration of CPU+FPGA to support customizable

computing by implementing various accelerators on
FPGAs.1 With such node-level customization, we are able
to achieve many interesting, often impressive acceleration
results.

1) A Case Study of FPGA Accelerator Integration: This
section presents the result we achieved for accelerating
the CS-BWAMEM [43] algorithm, a Spark-based [44] par-
allel implementation for the widely used BWA-MEM DNA
sequencing algorithm [45], to illustrate the opportunities
and challenges for acceleration using CPU+FPGA-based
configuration. Specifically, we highlight the acceleration of
one key computation kernel of this program, the Smith–
Waterman (S-W) algorithm [46], and present the chal-
lenge and solution for accelerator integration in the overall
Spark-based application.

a) S-W FPGA accelerator: We first describe our
FPGA accelerator design for the S-W algorithm in the
CS-BWAMEM software. The S-W algorithm is based on
2-D dynamic programming algorithm with quadratic time
complexity, and is one of the major computation kernels
in most DNA sequencing applications. It is widely used for
aligning two strings with a predefined scoring system to
achieve the best alignment score, and many prior studies
have proposed a variety of hardware accelerators for the
algorithm. These accelerators basically share the common
scheme of exploring the “anti-diagonal” parallelism in the
S-W algorithm, and achieve good performance improve-
ment for single S-W task [46]. However, this methodology
does not work well for the S-W implementation in the
CS-BWAMEM application due to the following reasons.
First, the inner-task parallelism is actually broken because
the CS-BWAMEM software applies extensive pruning. The
pruning strategy results in 2x speedup, but excludes the
“anti-diagonal” parallelism. Moreover, the efficiency of
prior accelerators relies on the regularity of the S-W input.
CS-BWAMEM features a large number of S-W tasks with
highly variant input sizes (due to the unpredictable out-
come of initial exact seed matching step for each read),
which does not fit well for these accelerators.

Nevertheless, the DNA sequencing application features
a large degree of task-level parallelism, i.e., one has to
align billions of short reads, which implies billions of
independent S-W tasks. Given these observations, in [47],
we propose an S-W accelerator design with a completely
different methodology, as shown in Fig. 5. The proposed
design features an array of processing elements (PEs) to
process multiple S-W tasks in parallel. Each PE processes
an S-W task in a sequential way instead of exploring the
“anti-diagonal” parallelism. This leads to a long processing
latency of each S-W task, but a simplified PE design with
very small resource consumption. As a result, the PE

1Note accelerators in this section are different than ASIC accelerators
simulated in Section II-A; here we are using FPGAs to accelerate certain
software functions. Such systems are more cost efficient (based on off-
the-shelf components) and more scalable (e.g., one may attach multiple
FPGAs to a processor or upgrade the processor independent of the
FPGAs).
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Fig. 5. PE-array-based Smith–Waterman accelerator design.

can be duplicated over 100 duplicates and the task-level
parallelism is well explored. Moreover, this PE design is
compatible with the pruning strategies, and is not affected
by the irregularity of the S-W input size. The “task distrib-
utor” in Fig. 5 feeds each PE with sufficient tasks and the
“result collector” assures the eventual in-order completion.
As a result, the proposed design demonstrates 24x speedup
over 12-core CPUs and 6x speedup over prior accelerator
designs exploring the “anti-diagonal” parallelism [47].

b) Challenges of hardware accelerator integra-
tion: Despite the substantial speedup by FPGA accelera-
tion, the integration of FPGA accelerators into big-data
computing frameworks like Spark is not easy. First, the
CPU-FPGA communication overhead offsets the perfor-
mance improvement of the FPGA acceleration. In particu-
lar, if the payload of each transaction is fairly small (if one
sends one short-read a time for alignment), the communi-
cation overhead could easily become the dominant perfor-
mance factor. Another challenge is to efficiently share the
FPGA resource among multiple CPU threads. To address
these two challenges, we developed the batch processing
and Accelerator-as-a-Service (AaaS) approaches [48].

c) Batch processing: Apache Spark programs are
mainly written in Java and/or Scala, and run on Java
virtual machines (JVMs) that do not support the use of
FPGAs by default. While the Java native interface (JNI)
serves as a standard tool to address this issue, it does not
always deliver an efficient solution. In fact, if we invoke the
FPGA accelerator routine in a straightforward way once
per S-W function, the system performance will become
over 1000x slower. The main reason for this performance
degradation is the tremendous JVM-FPGA communica-
tion overhead aggregated through all the invocations of
the S-W accelerator. To be specific, in our system, each
S-W invocation of the software version on the CPU costs
no more than 20 µs on average. Meanwhile, a complete
routine of an S-W accelerator invocation involves: 1) data
copy between a JVM and a native machine; 2) DMA
transfer between a native machine and an FPGA board
though PCIe; and 3) computation on the FPGA board. The
communication process alone, including 1) and 2), costs
over 25 ms per invocation. That is, even if an accelerator

could reduce the computation time of the S-W kernel
down to 0, the communication overhead easily erase any
performance gain.

To amortize the communication overhead, we batch a
group of reads together and offload them to the FPGA
board to improve the bandwidth utilization. In fact, any
Spark-based MapReduce program offers a large degree
of parallelism in the map stage. It is feasible and highly
effective to conduct batch processing for CS-BWAMEM.
Specifically, we merge a certain number of CS-BWAMEM’s
map tasks into a new map function, and conduct a series
of code transformations to batch the S-W kernel invoca-
tions from different map tasks together. This approach
substantially improves the system performance and turns
the 1000x slowdown back to 4x speedup compared to the
single-thread software implementation.

d) Accelerator-as-a-service (AaaS): Due to the high per-
formance of FPGA accelerators, offloading a single-thread
CPU workload onto the FPGA usually makes the FPGA
underutilized, which leaves opportunities for FPGA accel-
erators to be shared by multiple threads in a single node.
The major challenge is how to efficiently manage the
FPGA accelerator resources among multiple CPU threads.
To tackle this challenge, we propose an AaaS2 framework
and implement the FPGA management in a node-level
accelerator manager.

The AaaS framework abstracts the FPGA accelerator and
its management software on the CPU [called accelerator
manager (AM)] as a “server,” and treats each CPU thread
as a “client.” Client threads communicate with AM via a
hybrid of JNI and network sockets. Different client threads
send requests independently to the AM to accelerate S-W
batches, and the AM processes the requests in a first-come–
first-serve way. The AaaS framework enables sharing of the
FPGA resource among many CPU threads, and retains 3x
speedup over the multithread software.

In fact, this example motivated us to develop a more
general runtime system to support the accelerator inte-
gration for all Apache Spark programs, which will be
presented in Section IV.

2) Characterization of CPU-FPGA platforms: The perfor-
mance and energy efficiency offered by FPGA accelerators
encouraged the development of a variety of CPU-FPGA
platforms. The choice of the best platform may vary
depending on the application workloads. So, we carried
out a systematic study to characterize the existing CPU +

FPGA platforms and present guidelines for platform choice
for acceleration.

We classify the existing CPU+FPGA platforms in Table 1
according to their physical integration mechanisms and
the memory models. The most widely used integration
scheme is to connect an FPGA to a CPU via the PCIe bus,
with both components using (separate) private memories.
Many FPGA boards built on top of Xilinx or Intel FPGAs

2As explained in this section, the AaaS concept we propose is
different than the one Amazon AWS uses.
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Table 1 Classification of Modern High-Performance CPU-FPGA Platforms

use this way of integration because of its extensibility.
One example is the Alpha Data FPGA board [49] with the
Xilinx FPGA fabric that can leverage the Xilinx SDAccel
development environment [50] to support efficient accel-
erator design using high-level programming languages,
including C/C++ and OpenCL. This platform was used in
Section II-B2 for CS-BWAMEM acceleration. Nevertheless,
vendors like IBM also support a PCIe connection with a
coherent, shared memory model for easier programming.
For example, IBM has been developing the Coherent Accel-
erator Processor Interface (CAPI) on POWER8 [51] for
such an integration, and has used this platform in the IBM
data engine for NoSQL acceleration [52]. More recently,
closer CPU-FPGA integration becomes available using a
new class of processor-to-processor interconnects such as
front-side bus (FSB) and the newer QuickPath Interconnect
(QPI). These platforms tend to provide a coherent shared
memory, such as the FSB-based Convey system [53] and
the Intel HARP family [54]. While the first generation of
HARP (HARPv1) connects a CPU to an FPGA only through
a coherent QPI channel, the second generation of HARP
(HARPv2) adds two noncoherent PCIe data communica-
tion channels between the CPU and the FPGA, resulting in
a hybrid CPU-FPGA communication model.

To better understand and compare these platforms,
we conducted a quantitative analysis using microbench-
marks to measure the effective bandwidth and latency of
CPU-FPGA communication on these platforms. The results
lead to the following key insights (see [56] for details).

• Insight 1: The host-to-accelerator effective band-
width can be much lower than the peak physical
bandwidth (often the “advertised bandwidth” in the
product datasheet). For example, the Xilinx SDAccel
runtime system running on a Gen3x8 PCI-e bus
achieves only 1.6-GB/s CPU-FPGA communication
bandwidth to end users, while the PCIe peak phys-
ical bandwidth is 8-GB/s bandwidth [56]. Evalu-
ating a CPU-FPGA platform using these advertised
values is likely to result in a significant overesti-
mation of the platform performance. Worse still,
the relatively low effective bandwidth is not easy to
achieve. In fact, the communication bandwidth for
a small size of payload can be 100x smaller than
the maximum achievable effective bandwidth. A spe-
cific application may not always be able to supply
each communication transaction with a sufficiently
large size of payload to reach a high bandwidth

(which was encountered in our accelerator design of
another kernel of CS-BWAMEM [57]). For stream-
ing applications, the recent work on ST-Accel [58]
greatly improved the CPU-FPGA latency and band-
width with an efficient host-FPGA communication
library, which supports zero-copy (to eliminate the
overhead of buffer copy during the data transfer-
ring) and operating system kernel bypassing (to
minimize the data transferring latency).

• Insight 2: Both the private-memory and shared-
memory platforms have opportunities to outperform
each other. In general, a private-memory platform
like Alpha Data reaches a lower CPU-FPGA com-
munication bandwidth and higher latency because
it has to transfer data from the host memory to
the device memory on the FPGA board first in
order to be accessed by the FPGA fabric, while its
shared-memory counterpart allows the FPGA fabric
to directly retrieve data from the host memory, thus
simplifying the communication process and improv-
ing the latency and bandwidth. The opportunity of
private-memory platforms, nevertheless, comes from
the cases when the data in the FPGA device memory
are reused by the FPGA accelerator multiple times,
since the bandwidth of accessing the local device
memory is generally higher than that of accessing
the remote host memory. This is particularly bene-
ficial for iterative algorithms like logistic regression
where a large amount of read-only (training) data
are iteratively referenced for many times while only
the weight vector is being updated [59]. This trade-
off is modeled in [56] to help accelerator design-
ers estimate the effective CPU-FPGA communica-
tion bandwidth given the reuse ratio of the data
loaded to the device memory. For latency-sensitive
applications like high-frequency trading, online
transaction processing, or autonomous driving,
the shared-memory platform is preferred since it
features a simpler communication stack and lower
latency. Another low-latency configuration is to have
FPGAs connected to the network switches directly,
as done with the Microsoft Azure SmartNIC [60].
It provides not only low-latency processing of the
network data, but also excellent scalability to form
large programmable fabrics. However, since FPGAs
on the Microsoft Azure is not yet open to the public,
we could not provide a quantitative evaluation.

• Insight 3: CPU-FPGA memory coherence is interest-
ing, but not yet very useful in accelerator design,
at least for now. The newly announced CPU-FPGA
platforms, including CAPI, HARPv1, and HARPv2,
attempt to provide memory coherence support
between the CPU and the FPGA. Their implemen-
tation methodologies are similar: constructing a
coherent cache on the FPGA fabric to realize the
classic coherency protocol with the last-level cache
of the host CPU. However, although the FPGA fabric
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Fig. 6. Snapshot of the prototype cluster.

supplies megabytes of on-chip BRAM blocks, only
64 KB (the HARP family) or 128 KB (CAPI) of
them are organized into the coherent cache. That
is, these platforms maintain memory coherence for
only less than 5% of the on-chip memory space,
leaving the majority on-chip memory (BRAMs) to
be managed by application developers, which defeat
the original goal of providing simpler programming
interface via memory coherency. Moreover, the cur-
rent implementation of coherence cache access is
not efficient. For example, the coherent cache access
latency of the Intel HARP platform is up to 80 ns,
while the data stored in the on-chip BRAM blocks
can be retrieved in only one FPGA cycle (5 ns) [56].
Also, the coherent cache provides much less parallel
access capability compared to the scratchpads that
can potentially feed thousands of data per cycle.
In fact, all existing CPU-FPGA platforms support
only single-port caches, i.e., the maximal throughput
of these cache structures is only one transaction
per cycle, resulting in very limited bandwidth. As a
consequence, for now accelerator designers may still
have to explicitly manage FPGA on-chip memories.

C. Datacenter-Level Customization

Since many big-data applications require more than one
compute server to run, it is natural to consider cluster-
level or datacenter-level customization with FPGAs. More-
over, given the significant energy consumed by modern
datacenters, energy reduction using FPGAs in the datacen-
ter has the most impact. Since 2013, we have explored the
design options in heterogeneous datacenters with FPGA
accelerators via quantitative studies on a wide range of
systems, including a Xeon CPU cluster, a Xeon cluster
with FPGA accelerator attached to the PCI-E bus, a low-
power Atom CPU cluster, and a cluster of embedded ARM
processors with on-chip FPGA accelerators.

To evaluate the performance and energy efficiency of
various accelerator-rich systems, several real prototype
hardware systems are built to experiment with real-world
big-data applications.

1) Small-Core With On-Chip Accelerators: We built a
customized cluster of low-power CPU cores with on-chip
FPGA accelerator. The Xilinx Zynq SoC was selected as
the experimental heterogeneous SoC, which includes a
processing system based on dual ARM A9 cores and a pro-
grammable FPGA logic. The accelerators are instantiated
on the FPGA logic and can be reconfigured during runtime.
We build a cluster of eight Zynq nodes. Each node in the
cluster is a Xilinx ZC706 board, which contains a Xilinx
Zynq XC7Z045 chip. Each board also has 1 GB of onboard
DRAM and a 128-GB SD card used as a hard disk. The
ARM processor in the Zynq SoC shares the same DRAM
controller as well as address space with the programmable
fabrics. The processor can control the accelerators on
the FPGA fabrics using two system buses. The memory
is shared through four high-performance memory buses
(HPs) and one coherent memory bus (ACP). All the boards
are connected to a gigabit Ethernet switch.

A snapshot of the system is shown in Fig. 6.The hard-
ware layout of the Zynq boards and their connection is
shown in Fig. 7 in the bottom box for the ZC706 board.
The software setup and accelerator integration method are
shown in the upper box in Fig. 7. A lightweight Linux
system is running on the ARM processors of each Zynq
board; this provides drivers for peripheral devices such as
Ethernet and SD card, and also controls the on-chip FPGA
fabrics. To instantiate accelerators on the FPGA, we design
a driver module to configure the control registers of the
accelerators as memory-mapped IOs, and use DMA buffers
to facilitate data transfers between the host system and the
accelerators. Various accelerators are synthesized as FPGA
configuration bitstreams and can be programmed on the
FPGA at runtime.

2) Big-Core With PCIE-Connected Accelerators: Similar to
existing GPGPU platforms, FPGA accelerators can also be

Fig. 7. System overview of the prototype cluster.
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Fig. 8. Experimental cluster with standard server node integrated

with PCI-E based FPGA board from AlphaData.

integrated into normal server nodes using the PCIE bus.
Taking advantage of the energy efficiency of the FPGA
chips, these PCIE accelerator boards usually do not require
an external power supply, which makes it possible to
deploy FPGA accelerators into datacenters without the
need to modify existing infrastructures. In our experi-
ments, we integrate AlphaData (AD) FPGA boards into
our Xeon cluster shown in Fig. 8, which has 20 Xeon
CPU servers connected with both 1G and 10G Ethernet.
Each server contains an FPGA board with a Xilinx Virtex-
7 XC7VX690T-2 FPGA chip and 16 GB of onboard memory.

3) Baseline Small-Core and Big-Core Systems: For com-
parison purpose, we used a cluster of eight nodes of Intel
Atom CPUs and a cluster of eight nodes of embedded
ARM cores as the baseline of small-core CPU systems. The
ARM cluster is the same as our prototype presented earlier
in this section. For the baseline of big-core CPU systems,
we reuse the server cluster in Fig. 8 but without activation
of the FPGAs.

4) Evaluation Results: We measure the total application
time, including the initial data load and communication.
The energy consumption is calculated by measuring the
average power consumption during operation using a
power meter and multiplying it by the execution time,
since we did not observe significant variations of system
power during the execution in our experiments. All the
energy consumption measurements also include a 24-port
1G Ethernet switch.

a) Small-Core versus Big-Core systems: We first evaluate
the performance and energy consumption between big-
core with FPGA and small-core with FPGA using two
popular machine learning algorithms: logistic regression
(LR) and k-means (KM) clustering. Fig. 9 illustrates the
execution time and energy consumption of running LR and
KM applications on different systems. Notably, although
the Atom or ARM processor has much lower power,
it suffers long runtime for these applications. As a result,
both the performance and energy efficiency of pure Atom
and ARM clusters are worse than the single Xeon server,
which confirms the argument in [61] that low-power cores

could be less energy efficient for computation-intensive
workloads.

b) Big-Core versus Big-Core + FPGA: We then present
the effectiveness of FPGA accelerators in a common dat-
acenter setup. Fig. 9 includes the comparison between a
CPU-only cluster and a cluster of CPUs with PCIE FPGA
boards using LR and KM. For the machine learning work-
loads where most of the computation can be accelerated,
FPGA can contribute to significant speedup with only a
small amount of extra power. More specifically, the big-core
plus FPGA configuration achieves 3.05x and 1.47x speedup
for LR and KM, respectively, and reduces the overall energy
consumption to 38% and 56% of the baseline, respectively
(which implies a 2–3x energy reduction).

c) Small-Core + FPGA versus Big-Core + FPGA:
Several observations can be drawn from the results in
Fig. 9. First, for both small-core and big-core systems,
the FPGA accelerators provide significant performance and
energy-efficiency improvement—not only for kernels but
also for the entire application. Second, compared to big-
core systems, small-core systems benefit more from FPGA
accelerators. This means that it is more crucial to provide
accelerator support for future small-core-based datacen-
ters. Finally, although the kernel performance on eight
Zynq FPGAs is better than one AD FPGA, the application
performance of Xeon with AD-FPGA is still 2x better than
Zynq. This is because on Zynq, the nonacceleratable part
of the program, such as disk I/O and data copy, is much
slower than Xeon. On the other hand, the difference in
energy efficiency between Xeon plus FPGA and Zynq is
much smaller.

In parallel to the effort by CDSC on incorporating
and enabling FPGAs in computing clusters, a number of
large datacenter operators started supporting FPGAs in
private or public clouds. Baidu and Microsoft announced
using FPGAs in their datacenters in 2014 [8], [9], so far

Fig. 9. Execution time (above) and energy consumption (below)

normalized to the results on one Xeon server.
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only for first-party internal use. Amazon introduced FPGAs
in its AWS public computing cloud in late 2016 [11]
for third-party use. This trend was quickly followed by
other public cloud providers, such as Alibaba [12] and
Huawei [13].

III. C O M P I L AT I O N S U P P O R T

The successful adoption of customizable computing
depends on ease of programming of such ARAs. Therefore,
a significant part of CDSC research has been devoted to
develop the compilation and runtime support for ARAs.
Since the chip-level ARA is still at its infancy (although
we did develop a compilation system for composable
accelerator building blocks discussed in Section II-A
based on efficient pattern matching [62]), we focus
most of our effort on improving the acceleration design
and deployment on FPGAs for server-node level and
datacenter-level integration.

In this section, we present the compilation support that
automatically generates accelerators from user-written
functions in high-level programming languages such as
C/C++. We first introduce the modern commercial high-
level synthesis (HLS) tool and illustrate the challenges
of its programming model to generate high-performance
accelerators in Section III-A. To solve these challenges,
we present the Merlin compiler framework [63], [64]
along with a general architecture template for automated
design space exploration in Sections III-B and III-C, respec-
tively. Finally, in Section III-D, we show that special archi-
tecture templates, such as systolic array [65], can be
incorporated into the Merlin compiler to achieve much
higher performance for targeted applications (in this case
for deep learning).

A. Challenges of Commercial High-Level
Synthesis Tools

In recent years, the state-of-the-art commercial HLS
tools, Xilinx Vivado HLS [66] (based on AutoPilot [17]),
SDAccel [50], and Intel FPGA SDK for OpenCL [67],
have been widely used to fast prototype user-defined
functionalities in C-based languages (e.g., C/C++ and
OpenCL) on FPGAs without involving register-transfer
level (RTL) descriptions. In particular, for the OpenCL-
based flow, it provides a set of APIs on the host (CPU) side
to abstract away the underlying implementation details
of protocols and drivers to communicate with FPGAs.
On the kernel (FPGA) side, the tool compiles a user input
C-based program with pragmas to the LLVM intermediate
representation (IR) [68] and performs IR-level scheduling
to map the accelerator kernel to the FPGA. Although these
HLS tools indeed improve the FPGA programmability
(compared to RTL-based design methodology), they are
still facing some challenges.

• Challenge 1: Tedious OpenCL routine. The OpenCL
programming model for an application host requires
the programmer to use OpenCL APIs to create an

Fig. 10. The Merlin compiler execution flow.

OpenCL context, load the accelerator bitstream,
specify CPU-FPGA data transfer, configure accel-
erator interfaces, launch the kernel, and collect
the results. For example, a kernel with two input
and one output buffers as its interface will require
roughly 40 code statements with OpenCL APIs in the
host program. Clearly, it is too tedious to be done
manually by programmers.

• Challenge 2: Impact of code transformation on
performance. The input C code matters a lot to the
HLS synthesis result. For example, the HLS tool
always schedules a loop with a variable trip-count
to be executed sequentially even if it does not have
carried dependency. However, in this case, applying
loop tiling with a suitable tiled size could let the
HLS tool to generate multiple processing elements
(PEs) and schedule them to execute tasks in par-
allel. As a result, heavy code reconstruction with
hardware knowledge is usually required for design-
ers to deliver high-performance accelerators, which
creates substantial learning barrier for a typical soft-
ware programmer.

• Challenge 3: Manual design space exploration (DSE).
Finally, assuming the C program has been well
reconstructed, the modern HLS tools further require
designers to specify the task scheduling, external
memory access, and on-chip memory organization
using a set of pragmas. This means that designers
have to dig into the generated design and analyze its
performance bottleneck, or even use trial-and-error
approach to realize the best position and value for
pragmas to be specified.

B. The Merlin Compiler

To address these challenges and enable software
programmers with little circuit and microarchitec-
ture background to design efficient FPGA accelera-
tors, the researchers in CDSC developed Customization,
Mapping, Optimization, Scheduling, and Transformation
(CMOST) [69], a push-bottom source-to-srouce compila-
tion and optimization framework, to generate high-quality
HLS friendly C or OpenCL from fairly generic C/C++
code with minimal programmer intervention. It has been
further extended by Falcon Computing Solutions [70] to
become a commercial strength tool named the Merlin
compiler [63], [64]. The Merlin compiler is a system-level

PROCEEDINGS OF THE IEEE 11



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Cong et al.: Customizable Computing—From Single Chip to Datacenters

Table 2 Kernel Pragmas of Merlin Compiler

compilation framework that adopts an OpenMP-like [71]
programming model—i.e., a C-based program with a small
set of pragmas to specify the accelerator kernel scope and
task scheduling.

Fig. 10 presents the Merlin compiler execution flow.
It leverages the ROSE compiler infrastructure [72] and
polyhedral framework [73] for abstract syntax tree (AST)
analysis and transformation. The front end stage analyzes
the user program and separates host and computation ker-
nel. It then analyzes the data transfer and inserts necessary
OpenCL APIs to the host code so that Challenge 1 can
be eliminated. In addition, the kernel code transforma-
tion stage performs source-to-source code transformation
according to user-specified pragmas, as shown in Table 2.
Note that the Merlin compiler will perform all necessary
code reconstructions to make a transformation effective.
For example, when performing loop parallelism, the Merlin
compiler not only tiles and unrolls a loop but also con-
ducts memory partitioning for the sake of avoiding bank
conflict [26]. This approach largely address Challenge 2 as
it allows the programmers to use some simple pragmas to
specify the code transformation without considering any
underlying architecture issues. After both the host and
kernel code are prepared, the back end stage launches the
commercial HLS tool to generate the host binary as well as
FPGA bitstream.

Moreover, the Merlin compiler can further improve the
FPGA programmability by making “semi-automatic” design
optimization: instead of manually reconstructing the code
to make one optimization operation effective, program-
mers now can simply place a pragma and let the Merlin
compiler do the necessary changes. The ongoing work
includes developing an automated DSE framework that
leverages reinforcement learning algorithms to efficiently
explore the design space [74] for code transformation. This
will fully address Challenge 3.

Given the total flexibility of FPGA designs, the accel-
erator design space is immense. One way to manage the
search complexity is to use certain architecture templates
as a guide when appropriate. We will discuss two architec-
ture templates in the next two subsections.

We also observe and summarize some common compu-
tational patterns for most cases. Accordingly, we develop a
general architecture template [75], which we will present
in Section III-C, to rapidly identify the optimal design point
for the case that can be fit in.

C. Support of CPP Architecture

The Merlin compiler is particularly suitable for the com-
posable, parallel, and pipeline (CPP) architecture [75],
as shown in Fig. 11. Many designs map well to the CPP
architecture, which facilitates the high-performance accel-
erator design with the following features.

1) Coarse-grained pipeline with data caching. The over-
all CPP architecture consists of three stages: load,
compute, and store. The user-written kernel func-
tion only corresponds to the compute module
instead of defining the entire accelerator. The inputs
are processed block by block, i.e., iteratively loading
a certain number of sequence pairs into on-chip
buffers (Stage load) while the outputs are stored
back to DRAM (Stage store). Different blocks are
processed in a pipelined manner so that off-chip data
movement only happens in the load and store
stages, leaving the data accesses of computation
completely on chip.

2) Loop scheduling. The CPP architecture maps every
loop statement presented in the computation kernel
function to either a) a circuit that processes different
loop iterations in parallel; b) a pipeline where the
loop body corresponds to the pipeline stages; or c)
recursive composition of a) and b). Such a regular
structure allows us to effectively search for the opti-
mally solution.

3) On-chip buffer reorganization. In the CPP architec-
ture, all on-chip BRAM buffers are partitioned to
meet the port requirement of parallel circuits, where
the number of partitions of each buffer is determined
by the duplication factor of the parallel circuit that
connects to the buffer.

We note that the CPP architecture is general enough to
cover broad classes of applications. Specifically, the CPP
architecture is applicable as long as the computational
kernel is synthesizable and “cacheable,” i.e., the input data
can be partitioned and processed block by block. Any Map-
Reduce [76] or Spark [44] programs fall into this category.
For example, we could apply the CPP architecture to more
than 80% of Machsuite [77] benchmarks. But computa-

Fig. 11. The example of CPP architecture.
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tional kernels that have extensive random accesses to a
large memory footprint, such as the breadth-first search
(BFS) algorithm or page-rank algorithm of large graphs,
are not suitable for the CPP architecture.

One of the most important advantages of having the
CPP architecture is that we can define a clear design space
and derive a set of analytical models to quantify the per-
formance and resource utilization. It makes the automatic
design space exploration practical. In [75], we develop sev-
eral pruning strategies to reduce the design space so that
it can be exhaustively searched in minutes. The evaluation
result shows that our automatic DSE achieves on average a
72x speedup and 260.4x energy improvement for a broad
class of computation kernels compared to the out-of-box
synthesis results by SDAccel [50].

D. Support of Systolic Array Architecture for
Deep Learning

Systolic array [65] is another architecture template
supported by the Merlin compiler. The general systolic
array support is still under study. Our initial focus is to
support the design of convolutional neural network (CNN)
accelerator with systolic array.

CNN is one of the key algorithms for the deep learn-
ing applications, ranging from image/video classification,
recognition, and analysis to natural language understand-
ing, advances in medicine, and more. The core computa-
tion in the algorithm can be summarized as a convolution
operation on the multiple dimensional arrays. Since the
algorithm offers the potential of massive parallelization
and extensive data reuse, FPGA implementations of CNN
have seen an increased amount of interest from acad-
emia [78]–[87]. Among these, systolic array is proved to
be a promising architecture [84], [88]. A systolic array
architecture is a specialized form of parallel computing
with a deeply pipelined network of PEs. With the regular
layout and local (nearest neighbor) communication, which
is suitable for large-scale parallelism on FPGAs with high
clock frequency.

In order to support systolic array architecture in the
Merlin compiler, we first implemented a high throughput
systolic array design template in OpenCL with parame-
trized PE and buffer sizes. In addition, we defined a new
pragma for programmers to specify the code segment,
as shown in Code 1, where the loop bounds are the
constants of a CNN layer configuration. As a result, our
goal is to map Code 1 to the predefined template with the
optimal performance. The solution space is large due to
the following degree of freedom 1) selecting three loops in
Code 1 to map to 2-D systolic array architecture with in-
PE parallelism (note that some loops cannot be mapped to
the 2-D systolic architecture and we developed necessary
and sufficient conditions for mapping); 2) selecting the
suitable PE array shape to maximize the resource efficiency
and operating frequency; and 3) determining the data
reuse strategy under the on-chip resource constraint. The
detailed analysis of the design space can be found in [88].

Code 1. A convolutional layer with the Merlin pragma

Since all these design challenges and their interplay
need to be considered in a unified way to achieve a global
optimal, we develop a highly accurate analytical model
(< 2% error on average) to estimate the design through-
put and resource utilization given a design configuration.
Furthermore, to reduce the design space, we present two
pruning strategies to prune the design space while preserv-
ing the optimality.

1) We consider the resource usage efficiency. Since the
clock frequency will not drop significantly even with
high DSP utilization due to the scalability of the
systolic PE array architecture we adopted, we can
prune the design points with low DSP utilization.

2) We consider the data reuse strategies. We know
that BRAM sizes in the implementation are always
rounded up to the power of two, so we prune
the design space by only exploring the power-of-
two data reuse strategies. The pruned design space
of data reuse strategies can still cover the optimal
solution in the original design space because: a) our
throughput object function is a monotonic nonde-
creasing function of the BRAM buffer size; and b)
BRAM utilization is the same as another strategy
whose values have the same rounding up the power
of two. By applying the pruning on the data reuse
strategies, the design space reduces exponentially so
that we are able to perform an exhaustive search
to find the best strategy and result in an additional
17.5x saving on the average search time for AlexNet
convolutional layers. In fact, our DSE implemen-
tation is able to exhaustively explore the pruned
design space with the analytical model in several
minutes, which was several hundreds of hours when
exploring the full design space. Evaluation results
show that our design achieves up to 1171 Gops on
Intel Arria 10 with full automation [88].

We would like to point out that although many
accelerator design efforts in the industry are still
done using RTL programming for performance opti-
mization, as such the database acceleration effort at
Baidu [89] and the deep learning acceleration effort
at Microsoft [90], we believe that the move to high-
level programming-language-based accelerator designs is
inevitable, especially when the FPGAs are introduced
in the public clouds. The potential user base for FPGA
designs is much larger. Our goal is to support high-
level programming flow to “democratize customizable
computing.”
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IV. R U N T I M E S U P P O R T

After accelerators being developed using the compilation
tool, they need to be integrated with the applications
and deployed onto computing servers or datacenters with
runtime support.

Modern big data processing systems, such as Apache
Hadoop [76] and Spark [44], have evolved to an unprece-
dented scale. As a consequence, cloud service providers,
such as Amazon and Microsoft, have expanded their data-
center infrastructures to meet the ever-growing demands
for supporting big data applications. One key question
is: How can we easily and efficiently deploy FPGA accel-
erators into state-of-the-art big data computing systems
like Apache Spark [44] and Hadoop YARN [91]? To
achieve this goal, both programming abstractions and run-
time support are needed to make these existing systems
programmable to FPGA accelerators.

Code 2. Blaze application example (Spark Scala).

A. Programming Abstraction

In this section, we present the Blaze framework to
provide AaaS [92] (see Section II-B1 for the motivation),
which provides programming abstraction and runtime
support for easy and efficient FPGA (and GPU as well)
deployments in datacenters. To provide a user-friendly
programming interface for both application developers and
accelerator designers, we abstract accelerators as software
libraries so that application developers can use the hard-
ware accelerators as if they are using software code while
accelerator designers can easily package their design to a
shared library.

1) Application Interface: The Blaze programming inter-
face for user applications is designed to support accel-
erators with minimal code changes. To achieve this,
we extend the Spark RDD (Resilient Distributed Datasets)
to AccRDD which supports accelerated transformations.
Blaze is implemented as a third-party package that works
with the existing Spark framework3 without any modifi-
cation of Spark source code. Thus, Blaze is not specific
to a particular version of Spark. We explain the usage of

3Blaze also supports C++ applications with similar interfaces, but
we will mainly focus on Spark applications in this paper.

AccRDD with an example of logistic regression shown in
Code 2.

In Code 2, training data samples are loaded from
a file and stored to an RDD points, and are used to
train weights by calculating gradients in each iteration.
To accelerate the gradient calculation with Blaze, first the
RDD points needs to be extended to AccRDD train by
calling the Blaze API wrap. Then, an accelerator function
LogisticAcc can be passed to the .map transformation
of the AccRDD. This accelerator function is extended
from the Blaze interface Accelerator by specifying
an accelerator id and an optional compute function for
the fall-back CPU execution. The accelerator id specifies
the desired accelerator service, which in the example is
“LRGradientCompute.” The fall-back CPU function will be
called when the accelerator service is not available. This
interface is provided with fault-tolerance and portability
considerations. In addition, Blaze also supports caching
for Spark broadcast variables to reduce JVM-to-FPGA data
transfer.

The application interface of Blaze can be used by library
developers as well. For example, Spark MLlib developers
can include Blaze-compatible codes to provide acceleration
capabilities to end users. With Blaze, such capabilities are
independent of the execution platform. When accelerators
are not available, the same computation will be performed
on CPU. In this case, accelerators will be totally transparent
to the end users. In our evaluation, we created several
implementations for Spark MLlib algorithms such as logis-
tic regression and K-Means using this approach.

2) Accelerator Interface: For accelerator designers,
the programming experience is decoupled with any
application-specific details. An example of the interface
implementing the “LRGradientCompute” accelerator is
shown in Code 3.

Our accelerator interface hides details of FPGA accel-
erator initialization and data transfer by providing a set
of APIs. In this implementation, for example, the user
inherits the provided template, Task, and the input and
output data can be obtained by simply calling getInput
and getOutput APIs. No explicitly OpenCL buffer manip-
ulation is necessary for users. The runtime system will
prepare the input data and schedule it to the corresponding
task. The accelerator designer can use any available

Code 3. Blaze accelerator example (C++).
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programming framework to implement an accelerator task
as long as it can be integrated with an interface in C++.

B. Node-Level Runtime Management

Blaze facilitates AaaS in the node accelerator manager
(NAM) through two levels of queues: task queues and
platform queues. The architecture of NAM is illustrated
in Fig. 12. Each task queue is associated with a
“logical accelerator,” which represents an accelerator
library routine. When an application task requests a spe-
cific accelerator routine, the request is put into the cor-
responding task queue. Each platform queue is associated
with a “physical accelerator,” which represents an acceler-
ator hardware platform such as an FPGA board. The tasks
in task queue can be executed by different platform queues
depending on the availability of the implementations. For
example, if both GPU and FPGA implementations of the
same accelerator library routine are available, the task of
that routine can be executed on both devices.

This mechanism is designed with three considerations:
1) application-level accelerator sharing; 2) minimizing
FPGA reprogramming; and 3) efficient overlapping of data
transfer and accelerator execution to alleviate JVM-to-
FPGA overhead.

In Blaze, accelerator devices are owned by NAM rather
than individual applications, as we observed that in most
big-data applications, the accelerator utilization is less
than 50%. If the accelerator is owned by a specific appli-
cation, then much of the time it will be spent in idle,
wasting the FPGA resource and energy. The application-
level sharing inside NAM is managed by a scheduler that
sits between application requests and task queues. Our
initial implementation is a simple first-come–first-serve
scheduling policy. We leave the exploration of different
policies to future work.

The downside of providing application sharing is
the additional overheads of data transfer between the
application process and NAM process. For latency-sensitive
applications, Blaze also offers a reservation mode where
the accelerator device is reserved for a single application,

Fig. 12. Node accelerator manager design to enable FPGA AaaS.

i.e., a NAM instance will be launched inside the application
process.

The design of the platform queue focuses on mitigating
the large overhead in FPGA reprogramming. For a
processor-based accelerator such as GPU to begin
executing a different “logical accelerator,” it simply means
loading another program binary, which incurs minimum
overhead. With FPGA, on the other hand, the reprogram-
ming takes much longer (can be 1∼2 seconds). Such a
reprogramming overhead makes it impractical to use the
same scheme as the GPU in the runtime system. In Blaze,
a second scheduler sits between task queues and platform
queues to avoid frequent reprogramming of the same
FPGA device. Its scheduling policy is similar to the GAM
scheduling to be presented in Section IV-C.

CPU-FPGA Co-Management. In our initial Blaze run-
time, after the computation-bound kernel is offloaded to
the accelerators, the CPU stays idle, which wastes the
computing resources. To address this issue, we further
propose a dataflow execution model and an interval-based
scheduling algorithm to effectively orchestrate the com-
putation between multiple CPU cores and the FPGA on
the same node, which greatly improves the overall system
resource utilization. In our case study on genome data
in-memory sorting, we find that our adaptive CPU-FPGA
co-scheduling achieves 2.6x speedup over the 12-threaded
CPU baseline [93].

C. Datacenter-Level Runtime Management

Recall that the Blaze runtime system integrates with
Hadoop YARN to manage accelerator sharing among mul-
tiple applications. Blaze includes two levels of accelerator
management. A global accelerator manager (GAM) over-
sees all the accelerator resources in the cluster and distrib-
utes them to various user applications. Node accelerator
managers (NAMs) sit on each cluster node and provide
transparent accelerator access to a number of heteroge-
neous threads from multiple applications. After receiving
the accelerator computing resources from GAM, the Spark
application begins to offload computation to the acceler-
ators through NAM. NAM monitors the accelerator status
and handles JVM-to-FPGA data movement and accelerator
task scheduling. NAM also performs a heartbeat protocol
with GAM to report the latest accelerator status.

1) Blaze Execution Flow: During system setup, the
system administrator can register accelerators to NAM
through APIs. NAM reports accelerator information
to GAM through heartbeat. At runtime, user applications
request containers with accelerators from GAM. Finally,
during application execution time, user applications can
invoke accelerators and transfer data to and from acceler-
ators through NAM APIs.

2) Accelerator-Centric Scheduling: In order to solve
the global application placement problem consider-
ing the overwhelming FPGA reprogramming overhead,
we propose to manage the logical accelerator functionality,
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instead of the physical hardware itself, as a resource
to reduce such reprogramming overhead. We extend the
label-based scheduling mechanism in YARN to achieve this
goal: instead of configuring node labels as “FPGA,” we
propose to use accelerator functionality (e.g., “KMeans-
FPGA,” “Compression-FPGA”) as node labels. This helps
us to differentiate applications that are using the FPGA
devices to perform different computations. We can delay
the scheduling of accelerators with different functionalities
onto the same FPGA to avoid reprogramming as much as
possible. Different from the current YARN solution, where
node labels are configured into YARN’s configuration files,
node labels in Blaze are configured into NAM through
command-line. NAM then reports the accelerator informa-
tion to GAM through heartbeats, and GAM configures these
labels into YARN.

Our experiment results on a 20-node cluster with four
FPGA nodes show that static resource allocation and the
default resource allocations (i.e., YARN resource schedul-
ing policy) are 27% and 22% away from theoretical opti-
mal results, while our proposed runtime is only 9% away
from the optimal results.

At this point, the use of GAM is limited, as the public
cloud providers do not yet allow multiple users to share
FPGA resources. The NAM is very useful for accelera-
tor integration, especially with a multithreaded host pro-
gram or to bridge different level of programming abstrac-
tion (e.g., from JVM to FPGAs). For example, NAM is used
extensively in the genomic acceleration pipeline developed
by Falcon Computing [70].

V. C O N C L U D I N G R E M A R K S

This paper summarizes research contributions from the
decade-long research of CDSC on customizable architec-
tures at chip level, server-node level, and datacenter level,
as well as the compilation and runtime support. Compared
to classical von Neumann architecture with instruction-
based temporally multiplexing, these architectures achieve
significant performance and energy-efficiency gain with
extensive use of customized accelerators via spatial com-
puting. They are gaining greater importance as we come
to near the end of Moore’s law scaling. There are many
new research opportunities.

With Google’s success of TPU chip for deep learning
acceleration [94], we expect a lot more activities on chip-
level ARA in the coming years. The widely used GPUs
are in fact a class of important and efficient chip-level

accelerators for SIMD and SPMD workloads, which may
further refine and specialize to certain application domains
(e.g. deep learning and autonomous driving).

FPGAs remain to offer a very good tradeoff of flexibil-
ity and efficiency. In order to compete with ASIC-based
accelerators in terms of performance and energy efficiency,
we suggest FPGA vendors to consider two directions to fur-
ther refine the FPGA architectures: 1) include coarser-grain
computing blocks, such as SIMD execution units or CGRA-
like structures; and 2) simplify the clocking and I/O struc-
tures, which were introduced mostly for networking and
ASIC prototyping applications. Such simplification will not
only save the chip area to accommodate more computing
resources, but also has the potential to greatly shorten
the compilation time (which is a serious shortcoming of
existing FPGAs), as it will make placement and routing a
lot easier. Another direction is to build efficient overlay
architectures on top of existing FPGAs to avoid the long
compilation time.

In terms of compilation support, we see two promising
directions. On the one hand, we further increase the level
of programming abstraction to support domain-specific
languages (DSLs), such as Caffe [87], [95], TensorFlow
[96], Halide [97], and Spark [74]. In fact, these DSLs have
initial supports for FPGA compilation already and further
enhancement is ongoing. On the other hand, we will
consider specialized architecture supports to enable bet-
ter design space exploration to achieve the optimal syn-
thesis results. We have good success with the support
of stencil computation [28], [98], systolic arrays [88],
and the CPP architecture [75]. We hope to capture more
computation patterns and corresponding microarchite-
ture templates, and incorporate them in our compilation
flow.

Finally, we are adding the cost optimization as an impor-
tant metric in our runtime management tools of accel-
erator deployment in datacenter applications [99], and
also considering the extension of more popular runtime
systems, such as Kubernetes [100] and Mesos [101] for
acceleration support.
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